Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells
Fuyuan Liang , Jiaran Yang , Haiqing Wang , Junwei Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1190 -1197.
Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells
Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd0.2Ce0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La0.6Sr0.4Co0.2Fe0.8O3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests.
solid oxide fuel cell / physical vapor deposition / Gd2O3-doped CeO2 / metallic interconnects / electrical conductivity
| [1] |
Y. Zhang, R. Knibbe, J. Sunarso, et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 29(2017), No. 48, art. No. 1700132. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
S. Sarner, A. Schreiber, N.H. Menzler, and O. Guillon, Recycling strategies for solid oxide cells, Adv. Energy Mater., 12(2022), No. 35, art. No. 2201805. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), No. 6513, art. No. eaba6118. |
| [13] |
J. Kim, S. Im, S.H. Oh, et al., Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells, Sci. Adv., 7(2021), No. 40, art. No. eabj8590. |
| [14] |
|
| [15] |
|
| [16] |
G.Y. Wang, Y.L. Zhang, and M.F. Han, Densification of Ce0.9Gd0.1O2−δ interlayer to improve the stability of La0.6 Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O2−δ interface and SOFC, J. Electroanal. Chem., 857(2020), art. No. 113591. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Y. Yang, Y.X. Zhang, and M.F. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol., 298(2022), art. No. 121627. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
V.V. Krishnan, Recent developments in metal-supported solid oxide fuel cells, WIREs Energy Environ., 6(2017), No. 5, art. No. e246. |
| [30] |
D. Udomsilp, J. Rechberger, R. Neubauer, et al., Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems, Cell Rep. Phys. Sci., 1(2020), No. 6, art. No. 100072. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, and A.L. Thomann, Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 398(2020), art. No. 126095. |
| [42] |
|
| [43] |
|
| [44] |
|
/
| 〈 |
|
〉 |