Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications
Ziyong Chang , Sensen Niu , Zhengchang Shen , Laichang Zou , Huajun Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1244 -1260.
Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications
In the past few decades, microbubble flotation has been widely studied in the separation and beneficiation of fine minerals. Compared with conventional flotation, microbubble flotation has obvious advantages, such as high grade and recovery and low consumption of flotation reagents. This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles. In general, microbubbles have small bubble size, large specific surface area, high surface energy, and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles, greatly reducing the detaching probability of particles from bubbles. Microbubbles can be prepared by pressurized aeration and dissolved air, electrolysis, ultrasonic cavitation, photocatalysis, solvent exchange, temperature difference method (TDM), and Venturi tube and membrane method. Correspondingly, equipment for fine-particle flotation is categorized as microbubble release flotation machine, centrifugal flotation column, packed flotation column, and magnetic flotation machine. In practice, microbubble flotation has been widely studied in the beneficiation of ultrafine coals, metallic minerals, and nonmetallic minerals and exhibited superiority over conventional flotation machines. Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles, high stability of nanobubbles in aqueous solutions, and enhancement of particle hydrophobicity and flotation dynamics.
microbubble preparation / flotation / fine minerals / flotation equipment / bubble–particle interaction
| [1] |
F.H. Abd El-Rahiem, Recent trends in flotation of fine particles, J. Min. World Express, 3(2014), art. No. 63. |
| [2] |
P.P. Wang and P.R. Brito-Parada, Dynamics of a particle-laden bubble colliding with an air-liquid interface, Chem. Eng. J., 429(2022), art. No. 132427. |
| [3] |
W.P. Du, Research progress on micro-fine particles mineral flotation, Copper. Eng., 2017, No. 2, p. 63. |
| [4] |
H.N. Wang, W.Q. Yang, X.K. Yan, L.J. Wang, Y.T. Wang, and H.J. Zhang, Regulation of bubble size in flotation: A review, J. Environ. Chem. Eng., 8(2020), art. No. 104070. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
P.K. Tsave, M. Kostoglou, T.D. Karapantsios, and N.K. Lazaridis, A hybrid device for enhancing flotation of fine particles by combining micro-bubbles with conventional bubbles, Minerals, 11(2021), No. 6, art. No. 561. |
| [12] |
|
| [13] |
|
| [14] |
Y. Chen, S.C. Chelgani, X. Bu, and G. Xie, Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation, Ultrason. Sonochem., 77(2021), art. No. 105682. |
| [15] |
|
| [16] |
M. Kruszelnicki, A. Hassanzadeh, K.J. Legawiec, I. Polowczyk, and P.B. Kowalczuk, Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation, Ultrason. Sonochem., 84(2022), art. No. 105962. |
| [17] |
L.O. Filippov, A.S. Matinin, V.D. Samiguin, and I.V. Filippova, Effect of ultrasound on flotation kinetics in the reactor-separator, J. Phys. Conf. Ser., 416(2013), art. No. 012016. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
G.Z. Kyzas, A.C. Mitropoulos, and K.A. Matis, From microbubbles to nanobubbles: Effect on flotation, Processes, 9(2021), No. 8, art. No. 1287. |
| [25] |
M. Wu, S.Y. Yuan, H.Y. Song, and X.B. Li, Micro–nano bubbles production using a swirling-type venturi bubble generator, Chem. Eng. Process., 170(2022), art. No. 108697. |
| [26] |
K. Sakamatapan, M. Mesgarpour, O. Mahian, H.S. Ahn, and 5. Wongwises, Experimental investigation of the microbubble generation using a venturi-type bubble generator, Case Stud. Therm. Eng., 27(2021), art. No. 101238. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
X. Wang, S. Yuan, J. Liu, Y.M. Zhu, and Y.X. Han, Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism, J. Mol. Liq., 346(2022), art. No. 118312. |
| [31] |
M. Wu, H.Y. Song, X. Liang, N. Huang, and X.B. Li, Generation of micro–nano bubbles by self-developed swirl-type micro–nano bubble generator, Chem. Eng. Process., 181(2022), art. No. 109136. |
| [32] |
M. Zhao, Y.C. Liu, J.X. Zhang, H. Jiang, and R.Z. Chen, Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration, J. Membr. Sci., 671(2023), art. No. 121418. |
| [33] |
|
| [34] |
X.H. Tao, Y.F. Liu, H. Jiang, and R.Z. Chen, Microbubble generation with shear flow on large-area membrane for fine particle flotation, Chem. Eng. Process., 145(2019), art. No. 107671. |
| [35] |
B.Q. Xie, C.J. Zhou, L. Sang, X.D. Ma, and J.S. Zhang, Preparation and characterization of microbubbles with a porous ceramic membrane, Chem. Eng. Process., 159(2021), art. No. 108213. |
| [36] |
L.F. Zhou, L.H. Fu, and Q. Zhang, Efficient flotation column for fine particles, Nonferrous Met., 2007, No. 2, p. 55. |
| [37] |
P.P. Zhao and Y.J. Cao, Study status of flotation technology and high effective flotation columns for fine mineral, Met. Mine, 2011, No. 12, p. 78. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Y.L. Han, J.B. Zhu, L. Shen, et al., Bubble size distribution characteristics of a jet-stirring coupling flotation device, Minerals, 9(2019), No. 6, art. No. 369. |
| [44] |
|
| [45] |
|
| [46] |
Z.Huang,J. Kuang, L. Zhu, W.Yuan, and Z. Zou, Effect ofultrasonication on the separation kinetics of scheelite andcalcite, Miner. Eng.,163(2021), art. No.106762. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
X.K. Yan, S.Q. Meng, A. Wang, L.J. Wang, and Y.J. Cao, Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column, Asia Pac. J. Chem. Eng., 13(2018), No. 3, art. No. e2185. |
| [51] |
|
| [52] |
J.D. Miller, Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by X-ray CT, Utah University, Salt Lake City, 1993. |
| [53] |
Q. Zhou, Y.J. Cao, X.B. Li, G.P. Niu, and Y.H. Liu, Study on cyclone-static micro-bubble flotation column of scheelite ores, Nonferrous Met. Miner. Process. Sect., 2011, No. 1, p. 39. |
| [54] |
|
| [55] |
M.J. Zhao, J.J. Fang, G.D. Li, L. Zhang, and T.M. Zhang, State and application of cyclonic static microbubble flotation column, Multipurp. Util. Miner. Resour., 2016, No. 4, p. 6. |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
P.Y. Zhang, S.Z. Jin, L.M. Ou, W.C. Zhang, and Y.T. Zhu, Fine bauxite recovery using a plate-packed flotation column, Metals, 10(2020), No. 9, art. No. 1184. |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
S.X. Shi, L.J. Yang, Z.C. Shen, and S.J. Lu, Research status of fine particle flotation beneficiation methods and equipment, [in] Proceedings of the Proceedings of the Fifth National Conference on Mining and Dressing Technology Progress, Hohhot, 2006, p. 121. |
| [66] |
Z.C. Shen, D. Chen, S.X. Shi, S.J. Lu, and L. Meng, Development of BGRIMM flotation column technology, Nonferrous Met. Miner. Process. Sect., 2006, No. 6, p. 33. |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. |
| [74] |
|
| [75] |
Z. Zhang, L. Ren, and Y. Zhang, Role of nanobubbles in the flotation of fine rutile particles, Miner. Eng., 172(2021), art. No. 107140. |
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
Y. Cheng, Y.S. Song, B. Li, and Q.Q. Wang, Experimental research on the column flotation of micro-fine pyrite particles, Met. Mine, 2009, No. 6, p. 64. |
| [81] |
|
| [82] |
|
| [83] |
P.G. Wei, L.Y. Ren, Y.M. Zhang, and S.X. Bao, Influence of microbubble on fine wolframite flotation, Minerals, 11(2021), No. 10, art. No. 1079. |
| [84] |
|
| [85] |
|
| [86] |
W.S. Chen, J.T. Liu, X.B. Li, Y.J. Cao, and Y.T. Wang, Analysis of factors influencing fluorite flotation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 5, p. 100. |
| [87] |
S. Farrokhpay, I. Filippova, L. Filippov, A. Picarra, N. Rulyov, and D. Fornasiero, Flotation of fine particles in the presence of combined microbubbles and conventional bubbles, Miner. Eng., 155(2020), art. No. 106439. |
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Y. Liu, Y.J. Cao, G. Huang, J. Dong, and W.J. Zou, Semi-industrial test of a gold ore slime separation by cyclonic-static micro-bubble flotation column, Met. Mine, 2012, No. 3, p. 82. |
| [94] |
|
| [95] |
|
| [96] |
G.S. Zheng, J.T. Liu, L. Li, Z.J. Zhang, and H.W. Qian, Reverse flotation of the iron concentrate from magnetic separation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 8, p. 40. |
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
M. Buchmann, G. Öktem, M. Rudolph, and K.G.V. den Boogaart, Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling, Physicochem. Probl. Miner. Pro., 58(2022), No. 5. |
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
T.B. Zhang and Q. Zhang, Research of nanobubbles enhanced reverse anionic flotation of a mid-low grade phosphate ore, Physicochem. Probl. Miner. Pro., 58(2022). |
| [110] |
E. Bird and Z. Liang, Nanobubble capillary force between parallel plates, Phys. Fluids, 34(2022), No. 1, art. No. 013301. |
| [111] |
F.F. Zhang, L.J. Sun, H.C. Yang, et al., Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403. |
| [112] |
W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264. |
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
Y.W. Liu and X.R. Zhang, A review of recent theoretical and computational studies on pinned surface nanobubbles, Chin. Phys. B, 27(2018), No. 1, art. No. 014401. |
| [119] |
D. Tao, Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner. Eng., 183(2022), art. No. 107554. |
| [120] |
|
| [121] |
|
| [122] |
A. Azevedo, R. Etchepare, S. Calgaroto, and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Miner. Eng., No.(2016), p. 29. |
| [123] |
|
| [124] |
N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402. |
| [125] |
|
| [126] |
|
| [127] |
P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995. |
| [128] |
J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101. |
/
| 〈 |
|
〉 |