Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications

Ziyong Chang , Sensen Niu , Zhengchang Shen , Laichang Zou , Huajun Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1244 -1260.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1244 -1260. DOI: 10.1007/s12613-023-2615-8
Invited Review

Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications

Author information +
History +
PDF

Abstract

In the past few decades, microbubble flotation has been widely studied in the separation and beneficiation of fine minerals. Compared with conventional flotation, microbubble flotation has obvious advantages, such as high grade and recovery and low consumption of flotation reagents. This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles. In general, microbubbles have small bubble size, large specific surface area, high surface energy, and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles, greatly reducing the detaching probability of particles from bubbles. Microbubbles can be prepared by pressurized aeration and dissolved air, electrolysis, ultrasonic cavitation, photocatalysis, solvent exchange, temperature difference method (TDM), and Venturi tube and membrane method. Correspondingly, equipment for fine-particle flotation is categorized as microbubble release flotation machine, centrifugal flotation column, packed flotation column, and magnetic flotation machine. In practice, microbubble flotation has been widely studied in the beneficiation of ultrafine coals, metallic minerals, and nonmetallic minerals and exhibited superiority over conventional flotation machines. Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles, high stability of nanobubbles in aqueous solutions, and enhancement of particle hydrophobicity and flotation dynamics.

Keywords

microbubble preparation / flotation / fine minerals / flotation equipment / bubble–particle interaction

Cite this article

Download citation ▾
Ziyong Chang, Sensen Niu, Zhengchang Shen, Laichang Zou, Huajun Wang. Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(7): 1244-1260 DOI:10.1007/s12613-023-2615-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.H. Abd El-Rahiem, Recent trends in flotation of fine particles, J. Min. World Express, 3(2014), art. No. 63.

[2]

P.P. Wang and P.R. Brito-Parada, Dynamics of a particle-laden bubble colliding with an air-liquid interface, Chem. Eng. J., 429(2022), art. No. 132427.

[3]

W.P. Du, Research progress on micro-fine particles mineral flotation, Copper. Eng., 2017, No. 2, p. 63.

[4]

H.N. Wang, W.Q. Yang, X.K. Yan, L.J. Wang, Y.T. Wang, and H.J. Zhang, Regulation of bubble size in flotation: A review, J. Environ. Chem. Eng., 8(2020), art. No. 104070.

[5]

Alheshibri M, Qian J, Jehannin M, Craig VSJ. A history of nanobubbles. Langmuir, 2016, 32(43): 11086.

[6]

Ahmed N, Jameson GJ. The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process., 1985, 14(3): 195.

[7]

Reis AS, Reis Filho AM, Demuner LR, Barrozo MAS. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technol., 2019, 356, 884.

[8]

Zhang Q, Liu S, Yang C, Chen F, Lu S. Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment. Sep. Purif. Technol., 2014, 138, 186.

[9]

Han M, Park Y, Lee J, Shim J. Effect of pressure on bubble size in dissolved air flotation. Water Supply, 2002, 2(5–6): 41.

[10]

Qin WQ, Ren LY, Wang PP, Yang CR, Zhang YS. Efectro-flotation and collision-attachment mechanism of fine cassiterite. Trans. Nonferrous Met. Soc. China, 2012, 22(4): 917.

[11]

P.K. Tsave, M. Kostoglou, T.D. Karapantsios, and N.K. Lazaridis, A hybrid device for enhancing flotation of fine particles by combining micro-bubbles with conventional bubbles, Minerals, 11(2021), No. 6, art. No. 561.

[12]

Calgaroto S, Wilberg KQ, Rubio J. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng., 2014, 60, 33.

[13]

Zhou ZA, Xu ZH, Finch JA, Masliyah JH, Chow RS. On the role of cavitation in particle collection in flotation–A critical review. II. Miner. Eng., 2009, 22(5): 419.

[14]

Y. Chen, S.C. Chelgani, X. Bu, and G. Xie, Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation, Ultrason. Sonochem., 77(2021), art. No. 105682.

[15]

Peng Y, Mao Y, Xia W, Li Y. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel, 2018, 220, 558.

[16]

M. Kruszelnicki, A. Hassanzadeh, K.J. Legawiec, I. Polowczyk, and P.B. Kowalczuk, Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation, Ultrason. Sonochem., 84(2022), art. No. 105962.

[17]

L.O. Filippov, A.S. Matinin, V.D. Samiguin, and I.V. Filippova, Effect of ultrasound on flotation kinetics in the reactor-separator, J. Phys. Conf. Ser., 416(2013), art. No. 012016.

[18]

Daio T, Narita I, Nandy S, Hisatomi T, Domen K, Suganuma K. Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy. Chem. Phys. Lett., 2018, 706, 564.

[19]

Shen G, Zhang XH, Ming Y, Zhang LJ, Zhang Y, Hu J. Photocatalytic induction of nanobubbles on TiO2 surfaces. J. Phys. Chem. C, 2008, 112(11): 4029.

[20]

Paxton WF, Kistler KC, Olmeda CC, et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc., 2004, 126(41): 13424.

[21]

Liu MH, Zhao WC, Wang S, Guo W, Tang YZ, Dong YM. Study on nanobubble generation: Saline solution/water exchange method. ChemPhysChem, 2013, 14(11): 2589.

[22]

Lou ST, Gao JX, Xiao XD, et al. Studies of nanobubbles produced at liquid/solid interfaces. Mater. Charact., 2002, 48(2–3): 211.

[23]

Guo W, Shan H, Guan M, Gao LH, Liu MH, Dong YM. Investigation on nanobubbles on graphite substrate produced by the water–NaCl solution replacement. Surf. Sci., 2012, 606(17–18): 1462.

[24]

G.Z. Kyzas, A.C. Mitropoulos, and K.A. Matis, From microbubbles to nanobubbles: Effect on flotation, Processes, 9(2021), No. 8, art. No. 1287.

[25]

M. Wu, S.Y. Yuan, H.Y. Song, and X.B. Li, Micro–nano bubbles production using a swirling-type venturi bubble generator, Chem. Eng. Process., 170(2022), art. No. 108697.

[26]

K. Sakamatapan, M. Mesgarpour, O. Mahian, H.S. Ahn, and 5. Wongwises, Experimental investigation of the microbubble generation using a venturi-type bubble generator, Case Stud. Therm. Eng., 27(2021), art. No. 101238.

[27]

Ding G, Li Z, Chen J, Cai X. An investigation on the bubble transportation of a two-stage series venturi bubble generator. Chem. Eng. Res. Des., 2021, 174, 345.

[28]

Ma FY, Tao DP, Tao YJ. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal. Int. J. Coal Prep. Util., 2022, 42(4): 1126.

[29]

Xiong Y, Peng F. Optimization of cavitation venturi tube design for pico and nano bubbles generation. Int. J. Min. Sci. Technol., 2015, 25(4): 523.

[30]

X. Wang, S. Yuan, J. Liu, Y.M. Zhu, and Y.X. Han, Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism, J. Mol. Liq., 346(2022), art. No. 118312.

[31]

M. Wu, H.Y. Song, X. Liang, N. Huang, and X.B. Li, Generation of micro–nano bubbles by self-developed swirl-type micro–nano bubble generator, Chem. Eng. Process., 181(2022), art. No. 109136.

[32]

M. Zhao, Y.C. Liu, J.X. Zhang, H. Jiang, and R.Z. Chen, Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration, J. Membr. Sci., 671(2023), art. No. 121418.

[33]

Hornig N, Fritsching U. Liquid dispersion in premix emulsification within porous membrane structures. J. Membr. Sci., 2016, 514, 574.

[34]

X.H. Tao, Y.F. Liu, H. Jiang, and R.Z. Chen, Microbubble generation with shear flow on large-area membrane for fine particle flotation, Chem. Eng. Process., 145(2019), art. No. 107671.

[35]

B.Q. Xie, C.J. Zhou, L. Sang, X.D. Ma, and J.S. Zhang, Preparation and characterization of microbubbles with a porous ceramic membrane, Chem. Eng. Process., 159(2021), art. No. 108213.

[36]

L.F. Zhou, L.H. Fu, and Q. Zhang, Efficient flotation column for fine particles, Nonferrous Met., 2007, No. 2, p. 55.

[37]

P.P. Zhao and Y.J. Cao, Study status of flotation technology and high effective flotation columns for fine mineral, Met. Mine, 2011, No. 12, p. 78.

[38]

Wang GC, Bai XT, Wu CN, Li W, Liu K, Kiani A. Recent advances in the beneficiation of ultrafine coal particles. Fuel Process. Technol., 2018, 178, 104.

[39]

Li S, Lu DF, Chen XH, et al. Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area. Powder Technol., 2017, 320, 358.

[40]

Karagüzel C, Çobanoğlu G. Stage-wise flotation for the removal of colored minerals from feldspathic slimes using laboratory scale Jameson cell. Sep. Purif. Technol., 2010, 74(1): 100.

[41]

Gordiychuk A, Svanera M, Benini S, Poesio P. Size distribution and sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp. Therm. Fluid Sci., 2016, 70, 51.

[42]

Uçurum M. Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon. Powder Technol., 2009, 191(3): 240.

[43]

Y.L. Han, J.B. Zhu, L. Shen, et al., Bubble size distribution characteristics of a jet-stirring coupling flotation device, Minerals, 9(2019), No. 6, art. No. 369.

[44]

Wang C, Wang Z, Wei X, Li X. A numerical studyand flotation experiments of bicyclone column flotation for treating of produced water from ASPflooding. J. Water Process Eng., 2019, 32, 100972.

[45]

Sun XP, Liu WL, Wang WS, Chen S, Liu W. Study on particle size distribution law of air flotation bubble and its influencing factors in coal slime flotation. Coal Sci. Technol., 2019, 47(4): 205.

[46]

Z.Huang,J. Kuang, L. Zhu, W.Yuan, and Z. Zou, Effect ofultrasonication on the separation kinetics of scheelite andcalcite, Miner. Eng.,163(2021), art. No.106762.

[47]

Zhao W, Qu JZ, Li Z, Yang ZY, Zhou AN. Influencing factors of electroflotation-electrocoagulation seperation of coal macerals. Clean Coal Technol., 2018, 24(1): 57.

[48]

Yang HL, Zhu CY, Yi L, Wu XM. Research present situation and new progress of flotation column for fine paticles. Hunan Nonferrous Met., 2014, 30(5): 11.

[49]

Zhang HJ, Liu JT, Wang YT, Cao YJ, Ma ZL, Li XB. Cyclonic-static micro-bubble flotation column. Miner. Eng., 2013, 45, 1.

[50]

X.K. Yan, S.Q. Meng, A. Wang, L.J. Wang, and Y.J. Cao, Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column, Asia Pac. J. Chem. Eng., 13(2018), No. 3, art. No. e2185.

[51]

Yan XK, Shi R, Xu YJ, et al. Bubble behaviors in a labscale cyclonic-static micro-bubble flotation column. Asia Pac. J. Chem. Eng., 2016, 11(6): 939.

[52]

J.D. Miller, Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by X-ray CT, Utah University, Salt Lake City, 1993.

[53]

Q. Zhou, Y.J. Cao, X.B. Li, G.P. Niu, and Y.H. Liu, Study on cyclone-static micro-bubble flotation column of scheelite ores, Nonferrous Met. Miner. Process. Sect., 2011, No. 1, p. 39.

[54]

Deng XW, Liu JT, Wang YT, Cao YJ. Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column. Int. J. Min. Sci. Technol., 2013, 23(1): 89.

[55]

M.J. Zhao, J.J. Fang, G.D. Li, L. Zhang, and T.M. Zhang, State and application of cyclonic static microbubble flotation column, Multipurp. Util. Miner. Resour., 2016, No. 4, p. 6.

[56]

Idlas SA, Fitzpatrick JA, Slattery JC. Conceptual design of packed flotation columns. Ind. Eng. Chem. Res., 1990, 29(6): 943.

[57]

Zhang M, Li T, Wang G. A CFD study of the flow characteristics in a packed flotation column: Implications for flotation recovery improvement. Int. J. Miner. Process., 2017, 159, 60.

[58]

Wang B, Jiang H. Research and application of flotation column. Chin. J. Nonferrous Met., 2021, 31(4): 1027.

[59]

Sun ZM, Liu CJ, Yu GC, Yuan XG. Prediction of distillation column performance by computational mass transfer method. Chin. J. Chem. Eng., 2011, 19(5): 833.

[60]

Wang WZ, Chen LP, Zhao LB, Li FP. Experimental research for application of packed flotation column to reverse flotation of hematite. Min. Process. Equip., 2014, 42(2): 97.

[61]

P.Y. Zhang, S.Z. Jin, L.M. Ou, W.C. Zhang, and Y.T. Zhu, Fine bauxite recovery using a plate-packed flotation column, Metals, 10(2020), No. 9, art. No. 1184.

[62]

Zhang M, Li TL, Ma SJ, Wang GC. An experimental study of copper sulfide flotation in a packed cyclonic-static microbubble flotation column. Sep. Sci. Technol., 2018, 53(14): 2238.

[63]

He TS, Chen BC. Discussion on fine particle flotation equipment. China Min. Mag., 1994, 3(4): 31.

[64]

Yalcin T. Magnetoflotation: Development and laboratory assessment. Int. J. Miner. Process., 1992, 34(1–2): 119.

[65]

S.X. Shi, L.J. Yang, Z.C. Shen, and S.J. Lu, Research status of fine particle flotation beneficiation methods and equipment, [in] Proceedings of the Proceedings of the Fifth National Conference on Mining and Dressing Technology Progress, Hohhot, 2006, p. 121.

[66]

Z.C. Shen, D. Chen, S.X. Shi, S.J. Lu, and L. Meng, Development of BGRIMM flotation column technology, Nonferrous Met. Miner. Process. Sect., 2006, No. 6, p. 33.

[67]

Deng RD, Liu QJ, Hu T, Ye FH. Concentration of high-sulfur copper ore using a three-product magnetic flotation column. Min. Metall. Explor., 2013, 30(2): 122.

[68]

Liao Y, Ma Z, Cao Y. Improving reverse flotation of magnetite ore using pulse magnetic field. Miner. Eng., 2019, 138, 108.

[69]

Tao XX, Cao YJ, Liu J, Shi KY, Liu JY, Fan MM. Studies on characteristics and flotation of a hard-to-float high-ash fine coal. Procedia Earth Planet. Sci., 2009, 1(1): 799.

[70]

Jameson GJ. New directions in flotation machine design. Miner. Eng., 2010, 23(11–13): 835.

[71]

Xu GQ, Chen YR, Bu XN, Dong XS, Xie GY, Sun YJ. Separation performance of mechanical flotation cell and cyclonic microbubble flotation column: In terms of the beneficiation of high-ash coal fines. Energy Sources A, 2020, 42(23): 2845.

[72]

Fan MM, Tao D, Honaker R, Luo ZF. Nanobubble generation and its applications in froth flotation (Part IV): Mechanical cells and specially designed column flotation of coal. Min. Sci. Technol. China, 2010, 20(5): 641.

[73]

C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163.

[74]

Sobhy A, Tao DP. Nanobubble column flotation of fine coal particles and associated fundamentals. Int. J. Miner. Process., 2013, 124, 109.

[75]

Z. Zhang, L. Ren, and Y. Zhang, Role of nanobubbles in the flotation of fine rutile particles, Miner. Eng., 172(2021), art. No. 107140.

[76]

Tao D, Wu Z, Sobhy A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technol., 2021, 379, 12.

[77]

Fan GX, Liu JT, Cao YJ, Huo T. Optimization of fine ilmenite flotation performed in a cyclonic-static micro-bubble flotation column. Physicochem. Probl. Miner. Pro., 2014, 50(2): 823.

[78]

Ahmadi R, Khodadadi DA, Abdollahy M, Fan MM. Nano–microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol., 2014, 24(4): 559.

[79]

Ahmadi R, Darban A. Modeling and optimization of nano-bubble generation process using response surface methodology. Int. J. Nanosci. Nanotechnol., 2013, 9, 151.

[80]

Y. Cheng, Y.S. Song, B. Li, and Q.Q. Wang, Experimental research on the column flotation of micro-fine pyrite particles, Met. Mine, 2009, No. 6, p. 64.

[81]

Chipakwe V, Sand A, Chelgani SC. Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore-Assessment of process readiness. Sep. Sci. Technol., 2022, 57(8): 1351.

[82]

Cao YC, Huang GY, Yang LY, Liu SW, Deng QX. Experimental study on flotation of some copper ore by using crimm flotation cell. Hunan Nonferrous Met., 2017, 33(4): 11.

[83]

P.G. Wei, L.Y. Ren, Y.M. Zhang, and S.X. Bao, Influence of microbubble on fine wolframite flotation, Minerals, 11(2021), No. 10, art. No. 1079.

[84]

Zhang JR. Dispersion Behavior and Mechanism of Microfine Fluorite and Quartz, 2021, Inner Mongolia Autonomous Region, Inner Mongolia University of Science and Technology.

[85]

Wang YT. The application and development of microbubble column flotation technology in China. Adv. Mater. Res., 2010, 136, 194.

[86]

W.S. Chen, J.T. Liu, X.B. Li, Y.J. Cao, and Y.T. Wang, Analysis of factors influencing fluorite flotation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 5, p. 100.

[87]

S. Farrokhpay, I. Filippova, L. Filippov, A. Picarra, N. Rulyov, and D. Fornasiero, Flotation of fine particles in the presence of combined microbubbles and conventional bubbles, Miner. Eng., 155(2020), art. No. 106439.

[88]

Calgaroto S, Azevedo A, Rubio J. Flotation of quartz particles assisted by nanobubbles. Int. J. Miner. Process., 2015, 137, 64.

[89]

Rosa AF, Rubio J. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals. Miner. Eng., 2018, 127, 178.

[90]

Bu XN, Xie GY, Peng YL, Chen YR. Corrigendum to “Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology”. Int. J. Miner. Process., 2016, 157, 175.

[91]

Ma F, Tao D, Tao Y, Liu S. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation. Int. J. Min. Sci. Technol., 2021, 31(6): 1063.

[92]

Liu W. Application of Jameson flotation machine in coking coal preparation plant. Coal Chem. Ind., 2018, 41(3): 129.

[93]

Y. Liu, Y.J. Cao, G. Huang, J. Dong, and W.J. Zou, Semi-industrial test of a gold ore slime separation by cyclonic-static micro-bubble flotation column, Met. Mine, 2012, No. 3, p. 82.

[94]

Zhu YF, Liu JT, Cao YJ, Wang YT. Experimental study on copper cleaning by using cyclonic-static microbubble flotation column. China Mine Eng., 2011, 40(3): 13.

[95]

Wang WZ, Han MM, Yang CG. Applied research of cyclonic-static micro-bubble flotation column on the microfine hematite flotation. Adv. Mater. Res., 2013, 641, 242.

[96]

G.S. Zheng, J.T. Liu, L. Li, Z.J. Zhang, and H.W. Qian, Reverse flotation of the iron concentrate from magnetic separation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 8, p. 40.

[97]

Qin HJ, Zhang HJ, He C, Gao XT, Ma X. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column. China Molybdenum Ind., 2016, 40(4): 6.

[98]

Zhang TT, Peng YL, Xie GY, Chen YR, Bu XN. Experiment of flotation of microcrystalline graphite by cyclonic micro-bubble flotation column and flotator. Non Met. Mines, 2017, 40(1): 7.

[99]

Ou LM, Wang LJ, Feng QM, Wan L, Ye JS. Beneficiation of middle-low grade bauxite with micro-bubble flotation column. Min. Metall. Eng., 2011, 31(3): 40.

[100]

Santana RC, Ribeiro JA, Santos MA, Reis AS, Ataíde CH, Barrozo MAS. Flotation of fine apatitic ore using microbubbles. Sep. Purif. Technol., 2012, 98, 402.

[101]

Tao DP, Fan MM, Wu ZX, Zhang XY, Wang QS, Li ZK. Investigation of effects of nanobubbles on phosphate ore flotation. Int. J. Georesources Environ., 2018, 4(3): 133.

[102]

Li C, Zhang H. Surface nanobubbles and their roles in flotation of fine particles-A review. J. Ind. Eng. Chem., 2022, 106, 37.

[103]

M. Buchmann, G. Öktem, M. Rudolph, and K.G.V. den Boogaart, Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling, Physicochem. Probl. Miner. Pro., 58(2022), No. 5.

[104]

Knüpfer P, Ditscherlein L, Peuker UA. Nanobubble enhanced agglomeration of hydrophobic powders. Colloids Surf. A, 2017, 530, 117.

[105]

Hampton MA, Nguyen AV. Nanobubbles and the nanobubble bridging capillary force. Adv. Colloid Interface Sci., 2010, 154(1–2): 30.

[106]

Rulyov NN. Combined microflotation of fine minerals: Theory and experiment. Miner. Process. Extr. Metall., 2016, 125(2): 81.

[107]

Ditscherlein L, Knüpfer P, Peuker UA. The influence of nanobubbles on the interaction forces between alumina particles and ceramic foam filters. Powder Technol., 2019, 357, 408.

[108]

Li CW, Zhen KK, Hao YN, Zhang HJ. Effect of dissolved gases in natural water on the flotation behavior of coal. Fuel, 2018, 233, 604.

[109]

T.B. Zhang and Q. Zhang, Research of nanobubbles enhanced reverse anionic flotation of a mid-low grade phosphate ore, Physicochem. Probl. Miner. Pro., 58(2022).

[110]

E. Bird and Z. Liang, Nanobubble capillary force between parallel plates, Phys. Fluids, 34(2022), No. 1, art. No. 013301.

[111]

F.F. Zhang, L.J. Sun, H.C. Yang, et al., Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403.

[112]

W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264.

[113]

Ren LY, Zeng WN, Zhang ZY, Wei PG. Visualization of effect of micro–nano bubbles on aggregation of fine cassiterite. Chin. J. Nonferrous Met., 2022, 32(5): 1479.

[114]

An H, Liu G, Craig VS. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces. Adv. Colloid Interface Sci., 2015, 222, 9.

[115]

Johnson DJ, Al Malek SA, Al-Rashdi BAM, Hilal N. Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. J. Membr. Sci., 2012, 389, 486.

[116]

Craig VSJ. Very small bubbles at surfaces-the nanobubble puzzle. Soft Matter, 2011, 7(1): 40.

[117]

Ma FY, Zhang P, Tao DP. Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review. Int. J. Miner. Metall. Mater., 2022, 29(4): 727.

[118]

Y.W. Liu and X.R. Zhang, A review of recent theoretical and computational studies on pinned surface nanobubbles, Chin. Phys. B, 27(2018), No. 1, art. No. 014401.

[119]

D. Tao, Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner. Eng., 183(2022), art. No. 107554.

[120]

Ljunggren S, Eriksson JC. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids Surf. A, 1997, 129–130, 151.

[121]

Ishida N, Inoue T, Miyahara M, Higashitani K. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 2000, 16(16): 6377.

[122]

A. Azevedo, R. Etchepare, S. Calgaroto, and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Miner. Eng., No.(2016), p. 29.

[123]

Ducker WA. Contact angle and stability of interfacial nanobubbles. Langmuir, 2009, 25(16): 8907.

[124]

N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402.

[125]

Peng H, Birkett GR, Nguyen AV. Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid-water interface. Langmuir, 2013, 29(49): 15266.

[126]

Peng H, Birkett GR, Nguyen AV. Progress on the surface nanobubble story: What is in the bubble? Why does it exist?. Adv. Colloid Interface Sci., 2015, 222, 573.

[127]

P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995.

[128]

J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/