Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method

Xiaoxiao Pang , Tingting Wang , Bin Liu , Xiayue Fan , Xiaorui Liu , Jing Shen , Cheng Zhong , Wenbin Hu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1407 -1416.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1407 -1416. DOI: 10.1007/s12613-023-2614-9
Article

Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method

Author information +
History +
PDF

Abstract

Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method. The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hydrothermal process was investigated. Except for ethylene glycol/water solvent, impurity-free barium titanate was synthesized in pure water, methanol/water, ethanol/water, and isopropyl alcohol/water mixed solvents. Compared with other alcohols, ethanol promotes the formation of a tetragonal structure. In addition, characterization studies confirm that particles synthesized in methanol/water, ethanol/water, and isopropyl alcohol/water mixed solvents are smaller in size than those synthesized in pure water. In the case of alcohol-containing solvents, the particle size decreases in the order of isopropanol, ethanol, and methanol. Among all the media used in this study, ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality (defined as the ratio of two lattice parameters c and a, c/a = 1.0088) and small average particle size (82 nm), which indicates its great application potential in multilayer ceramic capacitors.

Keywords

barium titanate / hydrothermal synthesis / tetragonality / solvent effects

Cite this article

Download citation ▾
Xiaoxiao Pang, Tingting Wang, Bin Liu, Xiayue Fan, Xiaorui Liu, Jing Shen, Cheng Zhong, Wenbin Hu. Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(7): 1407-1416 DOI:10.1007/s12613-023-2614-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Pasuk, F. Neaţu, Ş. Neaţu, et al., Structural details of BaTiO3 nano-powders deduced from the anisotropic XRD peak broadening, Nanomaterials, 11(2021), No. 5, art. No. 1121.

[2]

Mao D, Zhang Z, Yang M, Wang ZM, Yu RB, Wang D. Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. Int. J. Miner. Metall. Mater., 2023, 30(3): 581.

[3]

Wang L, Lv JQ, Shi F, Song KX, Lei W, Zhou HF, Qi ZM, Wang J. Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic. J. Mater. Sci.: Mater. Electron., 2021, 32(19): 24041.

[4]

Liu Y, Wang SF, Chen ZJ, Xiao LX. Applications of ferroelectrics in photovoltaic devices. Sci. China Mater., 2016, 59(10): 851.

[5]

Bolla G, Dong HL, Zhen YG, Wang ZH, Hu WP. Organic cocrystals: The development of ferroelectric properties. Sci. China Mater., 2016, 59(7): 523.

[6]

Lv L, Wang Y, Gan L, Liu Q, Zhou JP. Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders. J. Mater. Sci.: Mater. Electron., 2018, 29(17): 14883.

[7]

E. Song, D.H. Kim, E.J. Jeong, et al., Effects of particle size and polymorph type of TiO2 on the properties of BaTiO3 nanopowder prepared by solid-state reaction, Environ. Res., 202(2021), art. No. 111668.

[8]

Suzuki K, Kijima K. Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD. J. Alloys Compd., 2006, 419(1–2): 234.

[9]

Li RJ, Wei WX, Hai JL, Gao LX, Gao ZW, Fan YY. Preparation and electric-field response of novel tetragonal barium titanate. J. Alloys Compd., 2013, 574, 212.

[10]

Kucuk O, Teber S, Kaya IC, Akyildiz H, Kalem V. Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers. J. Alloys Compd., 2018, 765, 82.

[11]

Han JM, Joung MR, Kim JS, et al. Hydrothermal synthesis of BaTiO3 nanopowders using TiO2 nanoparticles. J. Am. Ceram. Soc., 2014, 97(2): 346.

[12]

Shi Y, Pu YP, Cui YF, Luo YJ. Enhanced grain size effect on electrical characteristics of fine-grained BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron., 2017, 28(17): 13229.

[13]

Lee TT, Huang CY, Chang CY, et al. Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2. J. Mater. Res., 2012, 27(19): 2495.

[14]

Clabel H JL, Awan IT, Pinto AH, et al. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int., 2020, 46(3): 2987.

[15]

Kholodkova AA, Danchevskaya MN, Ivakin YD, et al. Solid state synthesis of barium titanate in air and in supercritical water: Properties of powder and ceramics. Ceram. Int., 2019, 45(17): 23050.

[16]

Wang S, Zhang Y, Ji Z, Gu YS, Huang YH, Zhou C. Characterization and growth dynamics of barium titanate crystallite on nanometer scale. J. Univ. Sci. Technol. Beijing (Engl. Ed.), 2005, 12(1): 33.

[17]

Surmenev RA, Chernozem RV, Skirtach AG, et al. Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursor. Ceram. Int., 2021, 47(7): 8904.

[18]

M. Li, L.L. Gu, T. Li, et al., TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application, Crystals, 10(2020), No. 3, art. No. 202.

[19]

Peng YF, Chen HL, Shi F, Wang J. Effect of polyethylene glycol on BaTiO3 nanoparticles prepared by hydrothermal preparation. IET Nanodielectr., 2020, 3(3): 69.

[20]

Hayashi H, Ebina T. Effect of hydrothermal temperature on the tetragonality of BaTiO3 nanoparticles and in-situ Raman spectroscopy under tetragonal–cubic transformation. J. Ceram. Soc. Jpn., 2018, 126(3): 214.

[21]

J.B. Gao, H.Y. Shi, H.N. Dong, R. Zhang, and D.L. Chen, Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis, J Nanopart Res, 17(2015), No. 7, art. No. 286.

[22]

Kaya C, Kalem V, Akyildiz H. Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties. Int. J. Appl. Ceram. Technol., 2019, 16(4): 1557.

[23]

Huang YA, Lu B, Li DD, et al. Control of tetragonality via dehydroxylation of BaTiO3 ultrafine powders. Ceram. Int., 2017, 43(18): 16462.

[24]

Hasbullah NN, Chen SK, Tan KB, Talib ZA, Liew JYC, Lee OJ. Photoluminescence activity of BaTiO3 nanocubes via facile hydrothermal synthesis. J. Mater. Sci.: Mater. Electron., 2019, 30(5): 5149.

[25]

Yin S, Hasegawa T. Morphology control of transition metal oxides by liquid-phase process and their material development. KONA Powder Part. J., 2023, 40, 94.

[26]

Mo XK, Liu YF, Li YJ. Effect of additives on particle characteristics of barium titanate nanopowder by hydrothermal synthesis. Mater. Res. Innov., 2008, 12(1): 35.

[27]

Nakashima K, Onagi K, Kobayashi Y, et al. Stabilization of size-controlled BaTiO3 nanocubes via precise solvothermal crystal growth and their anomalous surface compositional reconstruction. ACS Omega, 2021, 6(14): 9410.

[28]

Qi HQ, Fang L, Xie WT, Zhou HQ, Wang Y, Peng C. Study on the hydrothermal synthesis of barium titanate nanopowders and calcination parameters. J. Mater. Sci.: Mater. Electron., 2015, 26(11): 8555.

[29]

Wu MM, Long JB, Wang GG, et al. Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions. J. Am. Ceram. Soc., 1999, 82(11): 3254.

[30]

Su CY, Otsuka Y, Huang CY, et al. Grain growth and crystallinity of ultrafine barium titanate particles prepared by various routes. Ceram. Int., 2013, 39(6): 6673.

[31]

Baek C, Yun JH, Wang HS, et al. Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler. Appl. Surf. Sci., 2018, 429, 164.

[32]

Adam J, Klein G, Lehnert T. Hydroxyl content of BaTiO3 nanoparticles with varied size. J. Am. Ceram. Soc., 2013, 96(9): 2987.

[33]

Lee HW, Moon S, Choi CH, Kim DK. Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J. Am. Ceram. Soc., 2012, 95(8): 2429.

[34]

D.V. On, L.D. Vuong, T.V. Chuong, D.A. Quang, H.V. Tuyen, and V.T. Tung, Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles, J. Adv. Dielectr., 11(2021), No. 2, art. No. 2150014.

[35]

Maček Kržmanc M, Klement D, Jančar B, Suvorov D. Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt. Ceram. Int., 2015, 41(10): 15128.

[36]

Özen M, Mertens M, Snijkers F, Cool P. Hydrothermal synthesis and formation mechanism of tetragonal barium titanate in a highly concentrated alkaline solution. Ceram. Int., 2016, 42(9): 10967.

[37]

Zhang ZF, Wang WB, Wang AQ. Effects of solvothermal process on the physicochemical and adsorption characteristics of palygorskite. Appl. Clay Sci., 2015, 107, 230.

[38]

Inada M, Enomoto N, Hayashi K, Hojo J, Komarneni S. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol. Ceram. Int., 2015, 41(4): 5581.

[39]

A.D. Han, X.H. Yan, J.R. Chen, X.J. Cheng, and J.L. Zhang, Effects of dispersion solvents on proton conduction behavior of ultrathin Nafion films in the catalyst layers of proton exchange membrane fuel cells, Acta Phys. Chim. Sin., 38(2022), No. 3, art. No. 1912052.

[40]

Y.H. Xu, D. Zheng, W.X. Ji, N. Abu-Zahra, and D.Y. Qu, A molecular dynamics study of the binding effectiveness between undoped conjugated polymer binders and tetra-sulfides in lithium–sulfur batteries, Composite Part B, 206(2021), art. No. 108531.

[41]

Moore WE. The use of an approximate dielectric constant to blend solvent systems. J. Am. Pharm. Assoc. Sci. Ed., 1958, 47(12): 855.

[42]

Y.J. Yan, H. Xia, Y.Q. Fu, Z.Z. Xu, and Q.Q. Ni, Controlled hydrothermal synthesis of different sizes of BaTiO3 nanoparticles for microwave absorption, Mater. Res. Express, 6(2020), No. 12, art. No. 1250i3.

[43]

R.Y. Guo, Y. Bao, Q.L. Kang, C. Liu, W.B. Zhang, and Q. Zhu, Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method, Colloids Surf. A, 633(2022), art. No. 127931.

[44]

Nakashima K, Hironaka K, Oouchi K, et al. Optimizing TiO2 through water-soluble Ti complexes as raw material for controlling particle size and distribution of synthesized BaTiO3 nanocubes. ACS Omega, 2021, 6(48): 32517.

[45]

Baek C, Wang JE, Moon S, Choi CH, Kim DK. Formation and accumulation of intragranular pores in the hydrothermally synthesized barium titanate nanoparticles. J. Am. Ceram. Soc., 2016, 99(11): 3802.

[46]

Wang KX, Wang S, Hui KS, et al. Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC−Ru for highly efficient alkaline hydrogen evolution. Carbon Energy, 2022, 4(5): 856.

[47]

Su Z, Ling HY, Li M, et al. Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li−I2 batteries. Carbon Energy, 2020, 2(2): 265.

[48]

Z.N. Lei, X.Y. Ma, X.Y. Hu, J. Fan, and E.Z. Liu, Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P−NiS-decorated g-C3N4 heterojunctions, Acta Phys. Chim. Sin., 38(2022), No. 7, art. No. 2110049.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/