Flotation separation depressants for scheelite and calcium-bearing minerals: A review

Ziming Wang , Bo Feng , Yuangan Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1621 -1632.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1621 -1632. DOI: 10.1007/s12613-023-2613-x
Invited Review

Flotation separation depressants for scheelite and calcium-bearing minerals: A review

Author information +
History +
PDF

Abstract

Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals (e.g., apatite, fluorite, and calcite) and scheelite is challenging because their surface physicochemical properties are similar to those of scheelite. Fortunately, researchers have made substantial progress in separating the minerals of scheelite by using depressants. This study reviews the application and inhibition mechanism of inorganic depressants in obtaining tungsten from its calcium-bearing minerals. The application of new organic depressants in obtaining tungsten from its calcium-bearing minerals and the associated mechanisms are also summarized. After an objective assessment of inorganic and organic depressants’ advantages and disadvantages, possible future research directions for inorganic and organic depressants are proposed. Herein, we provide a theoretical basis for developing scheelite flotation depressants.

Keywords

scheelite / calcium-bearing minerals / flotation / depressant

Cite this article

Download citation ▾
Ziming Wang, Bo Feng, Yuangan Chen. Flotation separation depressants for scheelite and calcium-bearing minerals: A review. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(9): 1621-1632 DOI:10.1007/s12613-023-2613-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Errandonea D, Manjón FJ, Somayazulu M, Häusermann D. Effects of pressure on the local atomic structure of CaWO4 and YLiF4: Mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions. J. Solid State Chem., 2004, 177(4–5): 1087.

[2]

J.Z. Kuang, Z.L. Zou, Z.Y. Huang, P.F. Liu, W.Q. Yuan, and L.P. Zhu, Surface dissolution of scheelite under different regulators and its effect on flotation behavior, Miner. Eng., 164(2021), art. No. 106811.

[3]

C. Liu, C.Q. Ni, J.X. Yao, et al., Hydroxypropyl amine surfactant: A novel flotation collector for efficient separation of scheelite from calcite, Miner. Eng., 167(2021), art. No. 106898.

[4]

Z.Q. Huang, S.Y. Shuai, V.E. Burov, et al., Application of a new amidoxime surfactant in flotation separation of scheelite and calcite: Adsorption mechanism and DFT calculation, J. Mol. Liq, 364(2022), art. No. 120036.

[5]

Azizi D, Larachi F. Surface interactions and flotation behavior of calcite, dolomite and ankerite with alkyl hydroxamic acid bearing collector and sodium silicate. Colloids Surf. A, 2018, 537, 126.

[6]

Y. Foucaud, R.L.S. Canevesi, A. Celzard, V. Fierro, and M. Badawi, Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations, Appl. Surf. Sci., 562(2021), art. No. 150137.

[7]

Kupka N. Depressants in Scheelite Flotation: Mechanism of Sodium Carbonate and Acidified Water Glass and the Application of Process Mineralogy, 2020, Freiberg, Technische Universität Bergakademie Freiberg [Dissertation]

[8]

L.Y. Dong, Q. Wei, W.Q. Qin, and F. Jiao, Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite, Chem. Eng. Sci., 241(2021), art. No. 116720.

[9]

H.S. Han, Y. Xiao, Y.H. Hu, et al., Replacing Petrov’s process with atmospheric flotation using Pb-BHA complexes for separating scheelite from fluorite, Miner. Eng., 145(2020), art. No. 106053.

[10]

J.J. Wang, Z.Y. Gao, and W. Sun, Desorption and reuse of Pb-BHA-NaOL collector in scheelite flotation, Minerals, 13(2023), No. 4, art. No. 538.

[11]

Huang Y, Wang WQ, Zheng K, Wang Y, Feng QM, Yang Q. Flotation behavior and mechanism of andalusite and quartz in the presence of sodium oleate. Min. Metall. Eng., 2017, 37(3): 61.

[12]

Atademir MR, Kitchener JA, Shergold HL. The surface chemistry and flotation of scheelite, II. Flotation “collectors”. Int. J. Miner. Process., 1981, 8(1): 9.

[13]

Li XK, Zhang Y, Guan ZH, Yang H. Research progress of scheelite flotation reagents. Conserv. Util. Miner. Resour., 2022, 42(2): 14.

[14]

D.P. Patil and U.B. Nayak, Selective flotation of scheelite and calcite, [in] Proceeedings of National Seminar on Mineral Processing and IX Annual Technical Convention of Indian Institute of Mineral Engineers, Jamshedpur, 1985.

[15]

Gao ZY, Bai D, Sun W, Cao XF, Hu YH. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng., 2015, 72, 23.

[16]

Filippov LO, Duverger A, Filippova IV, Kasaini H, Thiry J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Miner. Eng., 2012, 36–38, 314.

[17]

Somasundaran P. Zeta potential of apatite in aqueous solutions and its change during equilibration. J. Colloid Interface Sci., 1968, 27(4): 659.

[18]

Moulin P, Roques H. Zeta potential measurement of calcium carbonate. J. Colloid Interface Sci., 2003, 261(1): 115.

[19]

Marinakis KI, Kelsall GH. The surface chemical properties of scheelite (CaWO4) I. The scheelite/water interface and CaWO4 solubility. Colloids Surf., 1987, 25(2–4): 369.

[20]

Arnold R, Brownbill EE, Ihle SW. Hallimond tube flotation of scheelite and calcite with amines. Int. J. Miner. Process., 1978, 5(2): 143.

[21]

Gao ZY, Hu YH, Sun W, Drelich JW. Surface-charge anisotropy of scheelite crystals. Langmuir, 2016, 32(25): 6282.

[22]

Hu YH, Gao ZY, Sun W, Liu XW. Anisotropic surface energies and adsorption behaviors of scheelite crystal. Colloids Surf. A, 2012, 415, 439.

[23]

Lahann RW. A chemical model for calcite crystal growth and morphology control. SEPM J. Sediment. Res., 1978, 48(1): 337.

[24]

Reddy MM, Nancollas GH. Calcite crystal growth inhibition by phosphonates. Desalination, 1973, 12(1): 61.

[25]

Gao ZY, Sun W, Hu YH. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng., 2015, 79, 54.

[26]

X. Wang, Q. Song, R.Q. Xie, J. Liu, and Y.M. Zhu, Selective flotation separation of scheelite from apatite by application of ATMP as an efficient depressant, J. Mol. Liq., 378(2023), art. No. 121604.

[27]

Tasker PW. The structure and properties of fluorite crystal surfaces. J. Phys. Colloques, 1980, 41(C6): C6.

[28]

Chen W, Feng QM, Zhang GF, Yang Q, Zhang C. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng., 2017, 113, 1.

[29]

W. Yao, M.L. Li, M. Zhang, R. Cui, J. Shi, and J.F. Ning, Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite in the presence of water glass, Colloids Surf. A, 632(2022), art. No. 127826.

[30]

Chen W, Feng QM, Zhang GF, Yang Q, Zhang C, Xu FP. The flotation separation of scheelite from calcite and fluorite using dextran sulfate sodium as depressant. Int. J. Miner. Process., 2017, 169, 53.

[31]

Gao YS, Gao ZY, Sun W, Hu YH. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process., 2016, 154, 10.

[32]

Sis H, Chander S. Reagents used in the flotation of phosphate ores: A critical review. Miner. Eng., 2003, 16(7): 577.

[33]

Martins JI, Amarante MM. Scheelite flotation from tarouca mine ores. Miner. Process. Extr. Metall. Rev., 2013, 34(6): 367.

[34]

Ji DH, Li JC, Ma ZL, Cheng W. Application of flotation column and machine in the separation of a low grade scheelite ore in Hunan province. Conserv. Util. Miner. Resour., 2021, 41(2): 117.

[35]

Fuerstenau MC, Gutierrez G, Elgillani DA. The influence of sodium silicate in nonmetallic flotation systems. Trans. AIME, 1968, 241(3): 319.

[36]

Yang XF, Roonasi P, Holmgren A. A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy. J. Colloid Interface Sci., 2008, 328(1): 41.

[37]

N. Kupka, B. Babel, and M. Rudolph, The potential role of colloidal silica as a depressant in scheelite flotation, Minerals, 10(2020), No. 2, art. No. 144.

[38]

Han YH, Liu WL, Chen JH. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces. Appl. Surf. Sci., 2016, 370, 403.

[39]

Marinakis MI. The Action of Sodium Silicate on the Flotation of Salt-type Minerals with Oleic Acid, 1980, London, Imperial College London [Dissertation]

[40]

Gao YS, Gao ZY, Sun W, Yin ZG, Wang JJ, Hu YH. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci., 2018, 512, 39.

[41]

Antti BM, Forssberg E. Pulp chemistry in calcite flotation. Modelling of oleate adsorption using theoretical equilibrium calculations. Miner. Eng., 1989, 2(1): 93.

[42]

Sun W, Tang HH, Chen C. Solution chemistry behavior of sodium silicate in flotation of fluorite and scheelite. Chin. J. Nonferrous Met., 2013, 23(8): 2274.

[43]

Z.H. Guan, K.W. Lu, Y. Zhang, H. Yang, and X.K. Li, Study of the effect of manganese ion addition points on the separation of scheelite and calcite by sodium silicate, Materials (Basel), 15(2022), No. 13, art. No. 4699.

[44]

Deng RD, Yang XF, Hu Y, Ku JG, Zuo WR, Ma YQ. Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite. Miner. Eng., 2018, 118, 133.

[45]

Feng B, Guo W, Xu HG, Peng JX, Luo XP, Zhu XW. The combined effect of lead ion and sodium silicate in the flotation separation of scheelite from calcite. Sep. Sci. Technol., 2017, 52(3): 567.

[46]

Yan WP, Xiong L, Chen XQ. Application environment and mechanism of water glass in scheelite flotation. China Tungsten Ind., 2014, 29(4): 20.

[47]

Lii YX, Li CG. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. I. Selective flotation of scheelite. Int. J. Miner. Process., 1983, 10(3): 205.

[48]

Feng B, Luo XP, Wang JQ, Wang PC. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng., 2015, 80, 45.

[49]

G.F. Zhang, H. Deng, K.S. Wei, and Q. Shi, The effect of acidized sodium silicate on flotation separation of fluorite and calcite, Nonferrous Met. Miner. Process. Sect., 2014, No. 1, p. 80.

[50]

Foucaud Y, Filippova IV, Filippov LO. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder. Technol., 2019, 352, 501.

[51]

J.H. Kang, Y.H. Hu, W. Sun, Z.Y. Gao, and R.Q. Liu, Utilization of sodium hexametaphosphate for separating scheelite from calcite and fluorite using an anionic–nonionic collector, Minerals, 9(2019), No. 11, art. No. 705.

[52]

W.L. Zhu, L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, Use of sodium hexametaphosphate and citric acid mixture as depressant in the flotation separation of scheelite from calcite, Minerals, 9(2019), No. 9, art. No. 560.

[53]

X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981.

[54]

Li CG, YX. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. II. The mechanism of the interaction between phosphate modifiers and minerals. Int. J. Miner. Process., 1983, 10(3): 219.

[55]

Bel’kova ON, Leonov SB, Shcherbakova EV. Intensification of beneficiation of scheelite ores by flotation. J. Min. Sci., 1993, 28(5): 480.

[56]

Samatova LA, Shepeta ED, Gvozdev VI. Poor scheelite ores from Primorye deposits: Mineralogy and processing characteristics and dressing flowsheets. J. Min. Sci., 2012, 48(3): 565.

[57]

H.Q. Zhang, F. Zhou, H. Yu, and M.X. Liu, Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite, Colloids Surf. A, 626(2021), art. No. 127080.

[58]

Wang JZ, Yin WZ, Sun ZM. Effect and mechanism of co-depressant of calcite and sodium hexametaphosphate on scheelite flotation. Chin. J. Nonferrous Met., 2018, 28(8): 1645.

[59]

Kupka N, Rudolph M. Froth flotation of scheelite—A review. Int. J. Min. Sci. Technol., 2018, 28(3): 373.

[60]

Gao YS, Gao ZY, Sun W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism. Chin. J. Nonferrous Met., 2017, 27(4): 859.

[61]

W. Yao, M.L. Li, M. Zhang, R. Cui, J. Shi, and J.F. Ning, Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass, Colloids Surf. A, 588(2020), art. No. 124394.

[62]

Zachara JM, Cowan CE, Resch CT. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta, 1991, 55(6): 1549.

[63]

Shi Q, Zhang GF, Feng QM, Ou LM, Lu YP. Effect of the lattice ions on the calcite flotation in presence of Zn(II). Miner. Eng., 2013, 40, 24.

[64]

Yu J, Ge YY, Guo XL, Guo WB. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore. Sep. Purif. Technol., 2016, 161, 88.

[65]

X.Y. Yu, R.R. Zhang, S.Y. Yang, et al., A novel decanedioic hydroxamic acid collector for the flotation separation of bastnäsite from calcite, Miner. Eng., 151(2020), art. No. 106306.

[66]

X.Y. Zhu, Y. Huang, Y.G. Zhu, N. Sun, and W.Q. Wang, Investigating the performance of oxalic acid for separating bast-naesite from calcium-bearing gangue minerals based on experiment and theoretical calculation, Miner. Eng., 170(2021), art. No. 107047.

[67]

Kupka N, Kaden P, Jantschke A, Schach E, Rudolph M. Acidified water glass in the selective flotation of scheelite from calcite, part II: Species in solution and related mechanism of the depressant. Physicochem. Probl. Miner. Process., 2020, 56(5): 798.

[68]

Wang X, Qin WQ, Jiao F, et al. Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company. Trans. Nonferrous Met. Soc. China, 2022, 32(3): 980.

[69]

Ilhan S, Kalpakli AO, Kahruman C, Yusufoglu I. The investigation of dissolution behavior of gangue materials during the dissolution of scheelite concentrate in oxalic acid solution. Hydrometallurgy, 2013, 136, 15.

[70]

L.Y. Dong, L.D. Qiao, Q.F. Zheng, et al., Enhanced adsorption of citric acid at the calcite surface by adding copper ions: Flotation separation of scheelite from calcite, Colloids Surf. A, 663(2023), art. No. 131036.

[71]

Kupka N, Möckel R, Rudolph M. Acidified water glass in the selective flotation of scheelite from calcite, Part I: Performance and impact of the acid type. Physicochem. Probl. Miner. Process., 2020, 56(2): 238.

[72]

L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, New insights into the depressive mechanism of citric acid in the selective flotation of scheelite from fluorite, Miner. Eng., 171(2021), art. No. 107117.

[73]

Liu ZY, Sun YH, Zhou XH, Wu T, Tian Y, Wang YZ. Synthesis and scale inhibitor performance of polyaspartic acid. J. Environ. Sci., 2011, 23, S153.

[74]

J.H. Fu, H.S. Han, Z. Wei, et al., Selective separation of scheelite from calcite using tartaric acid and Pb–BHA complexes, Colloids Surf. A, 622(2021), art. No. 126657.

[75]

L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, Utilization of iron ions to improve the depressive efficiency of tartaric acid on the flotation separation of scheelite from calcite, Miner. Eng., 168(2021), art. No. 106925.

[76]

Rutledge J, Anderson C. Tannins in mineral processing and extractive metallurgy. Metals, 2015, 5(3): 1520.

[77]

Y.P. Qian, X.A. Qiu, T.W. Shen, Y.Y. Huai, B. Chen, and Z. Wang, Effect of calcium ion on the flotation of fluorite and calcite using sodium oleate as collector and tannic acid as depressant, Minerals, 12(2022), No. 8, art. No. 996.

[78]

M. Fraga-Corral, P. García-Oliveira, A.G. Pereira, et al., Technological application of tannin-based extracts, Molecules, 25(2020), No. 3, art. No. 614.

[79]

Iskra J, Fleming MG, Kitchener JA. Quebracho in Mineral Processing, 1980, London, Imperial College London.

[80]

Hernáinz Bermúdez de Castro F, Calero de Hoces M. Influence of quebracho and sodium silicate on flotation of celestite and calcite with sodium oleate. Int. J. Miner. Process., 1993, 37(3–4): 283.

[81]

Hernáinz Bermúdez de Castro F, Gálvez Borrego A. The influence of temperature during flotation of celestite and calcite with sodium oleate and quebracho. Int. J. Miner. Process., 1996, 46(1–2): 35.

[82]

S.Y. Yang, Y.L. Xu, C. Liu, L.Y. Huang, Z.Q. Huang, and H.Q. Li, The anionic flotation of fluorite from barite using gelatinized starch as the depressant, Colloids Surf. A, 597(2020), art. No. 124794.

[83]

W.X. Zhu, J.H. Pan, X.Y. Yu, et al., The flotation separation of fluorite from calcite using hydroxypropyl starch as a depressant, Colloids Surf. A: Physicochem. Eng. Aspects, 616(2021), art. No. 126168.

[84]

Y.G. Chen, B. Feng, H.S. Yan, et al., Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation, Colloids Surf. A, 635(2022), art. No. 127987.

[85]

R.F. Sun, D. Liu, X.S. Tian, Q. Zuo, D.Q. Wang, and S.M. Wen, The role of copper ion and soluble starch used as a combined depressant in the flotation separation of fluorite from calcite: New insights on the application of modified starch in mineral processing, Miner. Eng., 181(2022), art. No. 107550.

[86]

Zheng X, Smith RW. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner. Eng., 1997, 10(5): 537.

[87]

Wang JZ, Bai JZ, Yin WZ, Liang X. Flotation separation of scheelite from calcite using carboxyl methyl cellulose as depressant. Miner. Eng., 2018, 127, 329.

[88]

Song S, Lopez-Valdivieso A, Martinez-Martinez C, Torres-Armenta R. Improving fluorite flotation from ores by dispersion processing. Miner. Eng., 2006, 19(9): 912.

[89]

Apling A. Flotation: Theory, reagents and ore testing. Corros. Sci., 1992, 33(12): 1997.

[90]

Dong LY, Jiao F, Qin WQ, Zhu HL, Jia WH. New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: Adsorption mechanism, AFM imaging and adsorption model. Appl. Surf. Sci., 2019, 463, 105.

[91]

Dong LY, Jiao F, Qin WQ, Liu W. Selective flotation of scheelite from calcite using xanthan gum as depressant. Miner. Eng., 2019, 138, 14.

[92]

C.H. Zhong, H.H. Wang, B. Feng, L.Z. Zhang, Y.G. Chen, and Z.Y. Gao, Flotation separation of scheelite and apatite by polysaccharide depressant xanthan gum, Miner. Eng., 170(2021), art. No. 107045.

[93]

Zhao KL, Gu GH, Wang XH, Yan W, Hu YH. The effect of depressant sesbania gum on the flotation of a talccontaining scheelite ore. J. Mater. Res. Technol., 2019, 8(1): 14.

[94]

Zhang YZ, Gu GH, Wu XB, Zhao KL. Selective depression behavior of guar gum on talc-type scheelite flotation. Int. J. Miner. Metall. Mater., 2017, 24(8): 857.

[95]

M.T. Wang, G.H. Huang, G.F. Zhang, Y.F. Chen, D.Z. Liu, and C.B. Li, Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant, Miner. Eng., 168(2021), art. No. 106938.

[96]

Y.J. Luo, G.F. Zhang, C.B. Li, et al., Flotation separation of smithsonite from calcite using a new depressant fenugreek gum, Colloids Surf. A, 582(2019), art. No. 123794.

[97]

Q. Wei, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective flotation separation of fluorite from calcite by using sesbania gum as depressant, Miner. Eng., 174(2021), art. No. 107239.

[98]

H.P. Zhou, Z.Z. Yang, Y.B. Zhang, F.X. Xie, and X.P. Luo, Flotation separation of smithsonite from calcite by using flaxseed gum as depressant, Miner. Eng., 167(2021), art. No. 106904.

[99]

H.P. Zhou, Z.Z. Yang, X.K. Tang, W. Sun, Z.Y. Gao, and X.P. Luo, Enhancing flotation separation effect of fluorite and calcite with polysaccharide depressant tamarind seed gum, Colloids Surf. A, 624(2021), art. No. 126784.

[100]

H.P. Zhou, Y.B. Zhang, X.K. Tang, Y.J. Cao, and X.P. Luo, Flotation separation of fluorite from calcite by using psyllium seed gum as depressant, Miner. Eng., 159(2020), art. No. 106514.

[101]

Z.J. Wang, H.Q. Wu, J. Yang, et al., Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant, Appl. Surf. Sci., 512(2020), art. No. 145714.

[102]

C.H. Zhong, B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Flotation separation of apatite and calcite using gum arabic as a depressant, Colloids Surf. A, 632(2022), art. No. 127723.

[103]

Ai GH, Liu C, Zhang WC. Utilization of sodium humate as selective depressants for calcite on the flotation of scheelite. Sep. Sci. Technol., 2018, 53(13): 2136.

[104]

Antsiferova SA, Markosyan SM, Suvorova ON. The effect of a humate reagent and sodium oleate on the wettability of fluorite, calcite, and quartz. Theor. Found. Chem. Eng., 2019, 53(4): 656.

[105]

X. Wang, F. Jiao, W.Q. Qin, et al., Sulfonated brown coal: A novel depressant for the selective flotation of scheelite from calcite, Colloids Surf. A, 602(2020), art. No. 125006.

[106]

Feng B, Guo W, Peng JX, Zhang WP. Separation of scheelite and calcite using calcium lignosulphonate as depressant. Sep. Purif. Technol., 2018, 199, 346.

[107]

Zhou WB, Moreno J, Torres R, Valle H, Song SX. Flotation of fluorite from ores by using acidized water glass as depressant. Miner. Eng., 2013, 45, 142.

[108]

Z.Y. Gao, C. Wang, W. Sun, Y.S. Gao, and P.B. Kowalczuk, Froth flotation of fluorite: A review, Adv. Colloid Interface Sci., 290(2021), art. No. 102382.

[109]

Feng B, Zhang LZ, Zhang WP, Wang HH, Gao ZY. Mechanism of calcium lignosulfonate in apatite and dolomite flotation system. Int. J. Miner. Metall. Mater., 2022, 29(9): 1697.

[110]

Chen W, Feng QM, Zhang GF, Liu DZ, Li LF. Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant. Miner. Eng., 2018, 119, 73.

[111]

L.Y. Dong, Q. Wei, W.Q. Qin, and F. Jiao, Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite, Sep. Purif. Technol., 241(2020), art. No. 116415.

[112]

Y. Zhang, Y.Y. Li, R. Chen, Y.H. Wang, J.S. Deng, and X.M. Luo, Flotation separation of scheelite from fluorite using sodium polyacrylate as inhibitor, Minerals, 7(2017), No. 6, art. No. 102.

[113]

J. Liu, X. Wang, Y.M. Zhu, and Y.X. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant, Miner. Eng., 175(2022), art. No. 107311.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/