Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides

Yurong He , Kuan Lu , Jinjia Liu , Xinhua Gao , Xiaotong Liu , Yongwang Li , Chunfang Huo , James P. Lewis , Xiaodong Wen , Ning Li

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2014 -2024.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2014 -2024. DOI: 10.1007/s12613-023-2612-y
Article

Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides

Author information +
History +
PDF

Abstract

The activation of CO on iron-based materials is a key elementary reaction for many chemical processes. We investigate CO adsorption and dissociation on a series of Fe, Fe3C, Fe5C2, and Fe2C catalysts through density functional theory calculations. We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites. The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst. The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C–O bond. We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models. We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations. Among them, a ridge linear regression model with 2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV.

Keywords

adsorption / CO activation / iron carbides / density functional theory

Cite this article

Download citation ▾
Yurong He, Kuan Lu, Jinjia Liu, Xinhua Gao, Xiaotong Liu, Yongwang Li, Chunfang Huo, James P. Lewis, Xiaodong Wen, Ning Li. Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 2014-2024 DOI:10.1007/s12613-023-2612-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev., 2007, 107(5): 1692.

[2]

Hindermann JP, Hutchings GJ, Kiennemann A. Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation. Catal. Rev., 1993, 35(1): 1.

[3]

Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal., 2001, 204(1): 129.

[4]

Foppa L, Copéret C, Comas-Vives A. Increased back-bonding explains step-edge reactivity and particle size effect for CO activation on Ru nanoparticles. J. Am. Chem. Soc., 2016, 138(51): 16655.

[5]

Fischer F, Tropsch H. Über die herstellung synthetischer ölgemische (synthol) durch aufbau aus kohlenoxid und wasserstoff. Brennstoff Chem., 1923, 4, 276.

[6]

Fischer F, Tropsch H. Die erdölsynthese bei gewöhnlichem druck aus den vergasungsprodukten der kohlen. Brennstoff Chem., 1926, 7, 97.

[7]

Shroff MD, Kalakkad DS, Coulter KE, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts. J. Catal., 1995, 156(2): 185.

[8]

Liu XW, Cao Z, Zhao S, et al. Iron carbides in Fischer–Tropsch synthesis: Theoretical and experimental understanding in epsilon-iron carbide phase assignment. J. Phys. Chem. C, 2017, 121(39): 21390.

[9]

Ding MY, Yang Y, Wu BS, et al. Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis. J. Mol. Catal. A: Chem., 2009, 303(1–2): 65.

[10]

Niemantsverdriet JW, Van der Kraan AM, Van Dijk WL, Van der Baan HS. Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination,reaction kinetic measurements. J. Phys. Chem., 1980, 84(25): 3363.

[11]

Datye AK, Jin YM, Mansker L, Motjope RT, Dlamini TH, Coville NJ. The nature of the active phase in iron Fischer-Tropsch catalysts. Stud. Surf. Sci. Catal., 2000, 130, 1139.

[12]

Rao KM, Huggins FE, Mahajan V, Huffman GP, Bukur DB, Rao VS. Mössbauer study of CO-precipitated Fischer-Tropsch iron catalysts. Hyperfine Interact., 1994, 93(1): 1751.

[13]

Mehandru SP, Anderson AB. Binding and orientations of CO on Fe(110), (100), and (111): A surface structure effect from molecular orbital theory. Surf. Sci., 1988, 201, 1-2.

[14]

Blyholder G, Lawless M. A theoretical study of the site of CO dissociation on Fe(100). Surf. Sci., 1993, 290(1–2): 155.

[15]

Meehan TE, Head JD. A theoretical comparison of CO bonding on the Fe(100) surface. Surf. Sci., 1991, 243(1–3): L55.

[16]

D.C. Sorescu, D.L. Thompson, M.M. Hurley, and C.F. Chabalowski, First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface, Phys. Rev. B, 66(2002), No. 3 art. No. 035416.

[17]

Stibor A, Kresse G, Eichler A, Hafner J. Density functional study of the adsorption of CO on Fe(110). Surf. Sci., 2002, 507–510, 99.

[18]

Bromfield TC, Ferré DC, Niemantsverdriet JW. A DFT study of the adsorption and dissociation of CO on Fe(100): Influence of surface coverage on the nature of accessible adsorption states. Chemphyschem, 2005, 6(2): 254.

[19]

Huo CF, Ren J, Li YW, Wang JG, Jiao HJ. CO dissociation on clean and hydrogen precovered Fe(111) surfaces. J. Catal., 2007, 249(2): 174.

[20]

Sorescu DC. Plane-wave DFT investigations of the adsorption, diffusion, and activation of CO on kinked Fe(710) and Fe(310) surfaces. J. Phys. Chem. C, 2008, 112(28): 10472.

[21]

Wang T, Tian XX, Li YW, Wang JG, Beller M, Jiao HJ. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations. ACS Catal., 2014, 4(6): 1991.

[22]

Yin JQ, He YR, Liu XC, et al. Visiting CH4 formation and C1 + C1 couplings to tune CH4 selectivity on Fe surfaces. J. Catal., 2019, 372, 217.

[23]

J. Appl. Phys., 2016, 120(5) art. No. 055301

[24]

Cao DB, Zhang FQ, Li YW, Jiao HJ. Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces. J. Phys. Chem. B, 2004, 108(26): 9094.

[25]

Cao DB, Zhang FQ, Li YW, Wang JG, Jiao HJ. Structures and energies of coadsorbed CO and H2 on Fe5C2(001), Fe5C2(110), and Fe5C2(100). J. Phys. Chem. B, 2005, 109(21): 10922.

[26]

Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM. Density functional theory study of iron and cobalt carbides for Fischer–Tropsch synthesis. J. Phys. Chem. C, 2010, 114(2): 1085.

[27]

Ozbek MO, Niemantsverdriet JWH. Elementary reactions of CO and H2 on C-terminated χ-Fe5C2(001) surfaces. J. Catal., 2014, 317, 158.

[28]

Ozbek MO, Niemantsverdriet JWH. Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (001) surface of the iron carbide χ-Fe5C2. J. Catal., 2015, 325, 9.

[29]

Deng LJ, Huo CF, Liu XW, et al. Density functional theory study on surface CxHy formation from CO activation on Fe3C(100). J. Phys. Chem. C, 2010, 114(49): 21585.

[30]

Sorescu DC. Plane-wave density functional theory investigations of the adsorption and activation of CO on Fe5C2 surfaces. J. Phys. Chem. C, 2009, 113(21): 9256.

[31]

Huo CF, Li YW, Wang JG, Jiao HJ. Insight into CH4 formation in iron-catalyzed Fischer–Tropsch synthesis. J. Am. Chem. Soc., 2009, 131(41): 14713.

[32]

Gracia JM, Prinsloo FF, Niemantsverdriet JW. Marsvan krevelen-like mechanism of CO hydrogenation on an iron carbide surface. Catal. Lett., 2009, 133(3–4): 257.

[33]

Petersen MA, van den Berg JA, van Rensburg WJ. Role of step sites and surface vacancies in the adsorption and activation of CO on χ-Fe5C2 surfaces. J. Phys. Chem. C, 2010, 114(17): 7863.

[34]

Zhao S, Liu XW, Huo CF, Li YW, Wang JG, Jiao HJ. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catal. Struct. React., 2015, 1(1): 44.

[35]

Zhao S, Liu XW, Huo CF, Li YW, Wang JG, Jiao HJ. Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics. J. Catal., 2012, 294, 47.

[36]

Zhao S, Liu XW, Huo CF, et al. Morphology control of K2O promoter on Hägg carbide (χ-Fe5C2) under Fischer-Tropsch synthesis condition. Catal. Today, 2016, 261, 93.

[37]

Pham TH, Duan XZ, Qian G, Zhou XG, Chen D. CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2 (510): Direct versus hydrogen-assisted CO dissociation. J. Phys. Chem. C, 2014, 118(19): 10170.

[38]

Broos RJP, Zijlstra B, Filot IAW, Hensen EJM. Quantum-chemical DFT study of direct and H- and C-assisted CO dissociation on the χ-Fe5C2 Hägg carbide. J. Phys. Chem. C: Nanomater. Interfaces, 2018, 122(18): 9929.

[39]

He YR, Zhao P, Yin JQ, et al. CO direct versus H-assisted dissociation on hydrogen coadsorbed χ-Fe5C2 Fischer–Tropsch catalysts. J. Phys. Chem. C, 2018, 122(36): 20907.

[40]

Song N, Cao JB, Chen BX, Qian G, Duan XZ, Zhou XG. CO adsorption and activation of η-Fe2C Fischer–Tropsch catalyst. Ind. Eng. Chem. Res., 2019, 58(47): 21296.

[41]

He YR, Zhao P, Meng Y, et al. Hunting the correlation between Fe5C2 surfaces and their activities on CO: The descriptor of bond valence. J. Phys. Chem. C, 2018, 122(5): 2806.

[42]

Chen BX, Wang D, Duan XZ, et al. Charge-tuned CO activation over a χ-Fe5C2 Fischer–Tropsch catalyst. ACS Catal., 2018, 8(4): 2709.

[43]

Broos RJP, Klumpers B, Zijlstra B, Filot IAW, Hensen EJM. A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of θ-Fe3C. Catal. Today, 2020, 342, 152.

[44]

de Smit E, Cinquini F, Beale AM, et al. Stability and reactivity of µ–χ–θ iron carbide catalyst phases in Fischer–Tropsch synthesis: Controlling µ C. J. Am. Chem. Soc., 2010, 132(42): 14928.

[45]

Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao HJ. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew. Chem. Int. Ed., 2011, 50(32): 7403.

[46]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15.

[47]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter., 1996, 54(16): 11169.

[48]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[49]

Perdew JP, Wang Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B: Condens. Matter., 1992, 45(23): 13244.

[50]

Blöchl PE. Projector augmented-wave method. Phys. Rev. B: Condens. Matter., 1994, 50(24): 17953.

[51]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758.

[52]

Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B: Condens. Matter., 1989, 40(6): 3616.

[53]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[54]

H. Jónsson, G. Mills, and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, [in] B.J. Berne, G. Ciccotti, and D.F. Coker, eds., Classical and Quantum Dynamics in Condensed Phase Simulations, 1998, p. 385.

[55]

Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 2000, 113(22): 9978.

[56]

Retief JJ. Powder diffraction data and Rietveld refinement of Hägg-carbide, χ-Fe5C2. Powder Diffr., 1999, 14(2): 130.

[57]

X.W. Liu, S. Zhao, Y. Meng, et al., Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation, Sci. Rep. 6(2016), art. No. 26184.

[58]

Barton GH, Gale B. The structure of a pseudo-hexagonal iron carbide. Acta Crystallogr., 1964, 17(11): 1460.

[59]

Wood IG, Vočadlo L, Knight KS, et al. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr., 2004, 37(1): 82.

[60]

Liu SL, Li YW, Wang JG, Jiao HJ. Reactions of CO, H2O, CO2, and H2 on the clean and precovered Fe(110) surfaces–A DFT investigation. J. Phys. Chem. C, 2015, 119(51): 28377.

[61]

Cao DB, Li YW, Wang JG, Jiao HJ. Chain growth mechanism of Fischer–Tropsch synthesis on Fe5C2(001). J. Mol. Catal. A: Chem, 2011, 346(1–2): 55.

[62]

J.Q. Yin, X.C. Liu, X.W. Liu, et al., Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle, Appl. Catal. B, 278(2020), art. No. 119308.

[63]

Bronsted JN. Acid and basic catalysis. Chem. Rev., 1928, 5(3): 231.

[64]

Evans MG, Polanyi M. Inertia and driving force of chemical reactions. Trans. Faraday Soc., 1938, 34(0): 11.

[65]

Liu ZP, Hu P. General trends in CO dissociation on transition metal surfaces. J. Chem. Phys., 2001, 114(19): 8244.

[66]

Pauling L. Atomic radii and interatomic distances in metals. J. Am. Chem. Soc., 1947, 69(3): 542.

[67]

Chang Q, Zhang CH, Liu CW, et al. et al., Relationship between iron carbide phases (µ-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer–Tropsch catalysts. ACS Catal., 2018, 8(4): 3304.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/