Coordination states of metal ions in molten salts and their characterization methods

Xin Song , Shaolong Li , Shanshan Liu , Yong Fan , Jilin He , Jianxun Song

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1261 -1277.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1261 -1277. DOI: 10.1007/s12613-023-2608-7
Invited Review

Coordination states of metal ions in molten salts and their characterization methods

Author information +
History +
PDF

Abstract

The macroscopic characteristics of molten salts are governed by their microstructures. Research on the structures of molten salts provides the foundation for a full understanding of the physicochemical properties of molten salts as well as a deeper analysis of the microscopic electrolysis process in molten salts. Information about the microstructure of matter can be obtained with the help of several speculative and experimental procedures. In this review, the advantages and disadvantages of the various test procedures used to determine the microstructures of molten salts are compared. The typical coordination configurations of metal ions in molten salt systems are also summarized. Furthermore, the impact of temperature, anions, cations, and metal oxides (O2−) on the structures of molten salts is discussed in detail. The accuracy and completeness of the information on molten salt structures need to be investigated by the integration of multiple methods and interdisciplinary fields. Information on the microstructure and coordination of molten salts deepens the understanding of the elementary elements of the microstructure of matter. This paper, which is based on the review of the coordination states of metal ions in molten salts, is hoped to inspire researchers to explore the inter-relationship between the microstructure and macroscopic properties of materials.

Keywords

coordination structure / characterization methods / molten salt composition / electrolysis

Cite this article

Download citation ▾
Xin Song, Shaolong Li, Shanshan Liu, Yong Fan, Jilin He, Jianxun Song. Coordination states of metal ions in molten salts and their characterization methods. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(7): 1261-1277 DOI:10.1007/s12613-023-2608-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiao SQ, Wang MY, Song WL. Editorial for special issue on high-temperature molten salt chemistry and technology. Int. J. Miner. Metall. Mater., 2020, 27(12): 1569.

[2]

Xi XL, Feng M, Zhang LW, Nie ZR. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. Int. J. Miner. Metall. Mater., 2020, 27(12): 1599.

[3]

van Speybroeck V, Gani R, Meier RJ. The calculation of thermodynamic properties of molecules. Chem. Soc. Rev., 2010, 39(5): 1764.

[4]

Jia W. Molecular Dynamics Study on Structure and Properties of Molten Salt in Alkali Metal Chloride System, 2016, Shanghai, East China University of Science and Technology, 145.

[5]

Brooker MH, Berg RW, von Barner JH, Bjerrum NJ. Matrix-isolated AI2OF6 2− ion in molten and solid LiF/NaF/KF. Inorg. Chem., 2000, 39(21): 4725.

[6]

Jin YJ, Ai YB. The technology of nuclear magnetic resonance and its applications. Phy. Eng., 2002, 12(1): 47.

[7]

Iwadate Y, Suzuki K, Onda N, et al. Local structure of molten LaCl3 analyzed by X-ray diffraction and La–LIII absorption-edge XAFS technique. J. Alloys Compd., 2006, 408–412, 248.

[8]

Wang CY, Chen XT, Wei R, Gong Y. Raman spectroscopic and theoretical study of scandium fluoride and oxyfluoride anions in molten FLiNaK. J. Phys. Chem. B, 2020, 124(30): 6671.

[9]

Dracopoulos V, Gilbert B, Papatheodorou GN. Vibrational modes and structure of lanthanide fluoride-potassium fluoride binary melts LnF3–KF (Ln = La, Ce, Nd, Sm, Dy, Yb). J. Chem. Soc., Faraday Trans., 1998, 94(17): 2601.

[10]

Ma N, You JL, Lu LM, Wang J, Wang M, Wan SM. Micro-structure studies of the molten binary K3AlF6-Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation. Inorg. Chem. Front., 2018, 5(8): 1861.

[11]

Edwards FG, Enderby JE, Howe RA, Page DI. The structure of molten sodium chloride. J. Phys. C Solid State Phys., 1975, 8(21): 3483.

[12]

Mitchell EWJ, Poncet PFJ, Stewart RJ. The ion pair distribution functions in molten rubidium chloride. Philos. Mag., 1976, 34(5): 721.

[13]

Locke J, Messoloras S, Stewart RJ, McGreevy RL, Mitchell EWJ. The structure of molten CsCl. Philos. Mag. B, 1985, 51(3): 301.

[14]

Liu XM, Sun HH, Feng XP, Zhang N. Relationship between the microstructure and reaction performance of aluminosilicate. Int. J. Miner. Metall. Mater., 2010, 17(1): 108.

[15]

Rollet AL, Bessada C, Rakhmatoulline A, et al. In situ high temperature NMR and EXAFS experiments in rare-earth fluoride molten salts. C. R. Chim., 2004, 7(12): 1135.

[16]

Rollet AL, Veron E, Bessada C. Fission products behavior in molten fluoride salts: Speciation of La3+ and Cs+ in melts containing oxide ions. J. Nucl. Mater., 2012, 429(1–3): 40.

[17]

Rollet AL, Salanne M. Studies of the local structures of molten metal halides. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2011, 107, 88.

[18]

Okamoto Y, Shiwaku H, Yaita T, Suzuki S, Gaune-Escard M. High-energy EXAFS study of molten GdCl3 systems. J. Mol. Liq., 2013, 187, 94.

[19]

Okamoto Y. XAFS simulation of highly disordered materials. Nucl. Instrum. Methods Phys. Res. Sect. A, 2004, 526(3): 572.

[20]

Okamoto Y, Shiwaku H, Yaita T, Narita H, Tanida H. Local structure of molten LaCl3 by K-absorption edge XAFS. J. Mol. Struct., 2002, 641(1): 71.

[21]

Zissi GD, Chrissanthopoulos A, Papatheodorou GN. Vibrational modes and structure of the LaCl3-CsCl melts. Vib. Spectrosc., 2006, 40(1): 110.

[22]

Bontempelli G, Magno F, Daniele S. Simple relationship for calculating backward to forward peak-current ratios in cyclic voltammetry. Anal. Chem., 1985, 57(7): 1503.

[23]

O’Dea JJ, Osteryoung J, Osteryoung RA. Theory of square wave voltammetry for kinetic systems. Anal. Chem., 1981, 53(4): 695.

[24]

Lantelme F, Chemla M. Chronoamperometry for the determination of metallic interdiffusion coefficients. Rapid transport processes in the first atomic layers. J. Electroanal. Chem., 1995, 396(1–2): 203.

[25]

Zhu TJ, Wang CY, Fu HY, Huang W, Gong Y. Electrochemical and Raman spectroscopic investigations on the speciation and behavior of chromium ions in fluoride doped molten LiCl-KCl. J. Electrochem. Soc., 2019, 166(10): H463.

[26]

Wu MY. Dissolution and Electrochemical Reduction of Multivalent Refractory Metal Oxides in NaKClF Molten Salt, 2016, Tangshan, North China University of Science and Technology, 85.

[27]

Hetmańczyk J, Hetmańczyk Ł, Migdał-Mikuli A, Mikuli E. Vibrational and reorientational dynamics, crystal structure and solid-solid phase transition studies in [Ca(H2O)6]Cl2 supported by theoretical (DFT) calculations. J. Raman Spectrosc., 2016, 47(5): 591.

[28]

Y.C. Chen, Principle and application of quantum chemical computation, Technol. Manage. Sci., (2020), p. 110.

[29]

Li XJ, Song J, Shi SP, et al. Dynamic fluctuation of U3+ coordination structure in the molten LiCl-KCl eutectic via first principles molecular dynamics simulations. J. Phys. Chem. A, 2017, 121(3): 571.

[30]

Metropolis N, Ulam S. The Monte Carlo method. J. Am. Stat. Assoc., 1949, 44(247): 335.

[31]

Baranyai A, Ruff I, McGreevy RL. Monte Carlo simulation of the complete set of molten alkali halides. J. Phys. C: Solid State Phys., 1986, 19(4): 453.

[32]

Alder BJ, Wainwright TE. Studies in molecular dynamics. I. General method. J. Chem. Phys., 1959, 31(2): 459.

[33]

Bessada C, Pauvert O, Zanghi D, et al. In situ experimental approach of the speciation in molten lanthanide and actinide fluorides combining NMR, EXAFS and molecular dynamics. ECS Trans., 2010, 33(7): 361.

[34]

C. Bessada, O. Pauvert, L. Maksoud, et al., In situ experimental approach of speciation in molten fluorides: A combination of NMR, EXAFS, and molecular dynamics, [in] M. Gaune-Escard and G.M. Haarberg eds., Molten Salts Chemistry Technololgy, Weley, 2014, p. 219.

[35]

He GD, Tang R, Duan XZ, et al. Molecular dynamics study on microstructure and diffusion characteristics of LiF-BeF2 molten salt. Chem. Eng. J., 2020, 71(8): 3565.

[36]

Levy HA, Agron PA, Bredig MA, Danford MD. X-ray and neutron diffraction studies of molten alkali halides. Ann. N. Y. Acad. Sci., 1960, 79(11): 762.

[37]

Førland T, Ùstvold T, Krogh-Moe J. Monte Carlo studies on fused salts. I. Calculations for a two-dimensional ionic model liquid. Acta Chem. Scand., 1968, 22(8): 2415.

[38]

Howe MA, McGreevy RL. A neutron-scattering study of the structure of molten lithium chloride. Philos. Mag. B, 1988, 58(5): 485.

[39]

R. Takagi, H. Ohno, and K. Furukawa, Structure of molten KCl, J. Chem. Soc., Faraday Trans. 1, 75(1979), art. No. 1477.

[40]

Kwon C, Noh SH, Chun H, Hwang IS, Han B. First principles computational studies of spontaneous reduction reaction of Eu(III) in eutectic LiCl-KCl molten salt. Int. J. Energy Res., 2018, 42(8): 2757.

[41]

J. Zhao, Z.T. Liu, W.S. Liang, and G.M. Lu, Evaluation of the local structure and electrochemical behavior in the LiCl-KCl-SmCl3 melt, J. Mol. Liq., 363(2022), art. No. 119818.

[42]

Song J, Shi SP, Li XJ, Yan LM. First-principles molecular dynamics modeling of UCl3 in LiCl-KCl eutectic. J. Mol. Liq., 2017, 234, 279.

[43]

Jiang T, Wang N, Cheng CM, Peng SM, Yan LM. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3. Acta Phys. Chim. Sin., 2016, 32(3): 647.

[44]

Pastore G, Akdeniz Z, Tosi MP. Structure of molten yttrium chloride in an ionic model. J. Phys. Condens. Matter, 1991, 3(42): 8297.

[45]

Akdeniz Z, Tosi MP. Structure and binding of ionic clusters in Th and Zr chloride melts. Z. Naturforsch. A: Phys. Sci., 2001, 56(11): 717.

[46]

Okamoto Y, Madden PA. Structural study of molten lanthanum halides by X-ray diffraction and computer simulation techniques. J. Phys. Chem. Solids, 2005, 66(2–4): 448.

[47]

Okamoto Y, Suzuki S, Shiwaku H, Ikeda-Ohno A, Yaita T, Madden PA. Local coordination about La3+ in molten LaCl3 and its mixtures with alkali chlorides. J. Phys. Chem. A, 2010, 114(13): 4664.

[48]

Bulavin L, Sokol’skii V, Roik O, et al. Structure and physical properties of ternary NaF-LiF-LnF3 (Ln = La, Nd) systems of eutectic compositions. Phys. Chem. Liq., 2016, 54(6): 717.

[49]

Cui H. Molecular Dynamics Simulation of Melt Structure of Rare Earth Metal Halide Molten Salt System, 2002, Kumming, Kunming University of Science and Technology, 136.

[50]

C. Bessada, D. Zanghi, M. Salanne, et al., Investigation of ionic local structure in molten salt fast reactor LiF-ThF4-UF4 fuel by EXAFS experiments and molecular dynamics simulations, J. Mol. Liq., 307(2020), art. No. 112927.

[51]

Rollet AL, Rakhmatullin A, Bessada C. Local structure analogy of lanthanide fluoride molten salts. Int. J. Thermophys., 2005, 26(4): 1115.

[52]

E. Stefanidaki, G.M. Photiadis, C.G. Kontoyannis, A.F. Vik, and T. Østvold, Oxide solubility and Raman spectra of NdF3-LiF-KF-MgF2-Nd2O3 melts, J. Chem. Soc., Dalton Trans., 2002, No. 11, p. 2302.

[53]

Hatem G, Gaune-Escard M. Calorimetric investigation of (xKF+(1−x)NdF3(l). J. Chem. Thermodyn., 1993, 25(2): 219.

[54]

Hu XW, Wang ZW, Gao BL, Shi ZN, Liu FG, Cao XZ. Density and ionic structure of NdF3-LiF melts. J. Rare Earths, 2010, 28(4): 587.

[55]

Dai JX, Han H, Li QN, Huai P. First-principle investigation of the structure and vibrational spectra of the local structures in LiF-BeF2 molten salts. J. Mol. Liq., 2016, 213, 17.

[56]

Lv XJ, Han ZX, Chen JG, Jiang LX, Xu ZM, Liu QS. First-principles molecular dynamics study of ionic structure and transport properties of LiF-NaF-AlF3 molten salt. Chem. Phys. Lett., 2018, 706, 237.

[57]

Guo H, Li J, Zhang HL, et al. First-principles molecular dynamics investigation on KF-NaF-AlF3 molten salt system. Chem. Phys. Lett., 2019, 730, 587.

[58]

Bessada C, Zanghi D, Pauvert O, et al. High temperature EX-AFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids. J. Nucl. Mater., 2017, 494, 192.

[59]

Qiao Y, Pedersen CM, Wang YX, Hou XL. NMR insights on the properties of ZnCl2 molten salt hydrate medium through its interaction with SnCl4 and fructose. ACS Sustainable Chem. Eng., 2014, 2(11): 2576.

[60]

Pauvert O, Zanghi D, Salanne M, et al. In situ experimental evidence for a nonmonotonous structural evolution with composition in the molten LiF–ZrF4 system. J. Phys. Chem. B, 2010, 114(19): 6472.

[61]

C. Bessada and A.L. Rollet, In situ spectroscopy in molten fluoride salts, [in] F. Lantelme and H. Grou eds., Molten Salts Chemistry, Elsevier, 2013, p. 33.

[62]

Pauvert O, Salanne M, Zanghi D, et al. Ion specific effects on the structure of molten AF-ZrF4 systems (A+ = Li+, Na+, and K+). J. Phys. Chem. B, 2011, 115(29): 9160.

[63]

Hoard JL. Structures of complex Fluorides.1 Potassium heptafluocolumbate and potassium heptafluotantalate. The configuration of the heptafluocolumbate and heptafluotantalate ions. J. Am. Chem. Soc., 1939, 61(5): 1252.

[64]

English RB, Heyns AM, Reynhardt EC. An X-ray, NMR, infrared and Raman study of K2TaF7. J. Phys. C Solid State Phys., 1983, 16(5): 829.

[65]

Torardi CC, Brixner LH, Blasse G. Structure and luminescence of K2TaF7 and K2NbF7. J. Solid State Chem., 1987, 67(1): 21.

[66]

Wang XD, Duan SZ. Identification of complex ions of Nb(V) in FLINAK-O2- System by infrared spectra. Rare Met., 1993, 12(3): 209.

[67]

Chen GS, Okido M, Oki T. Electrochemical studies of titanium ions (Ti4+) in equimolar KCl-NaCl molten salts with 1 wt% K2TiF6. Electrochim. Acta, 1987, 32(11): 1637.

[68]

Chen GS, Okido M, Oki T. Electrochemical studies of titanium in fluoride-chloride molten salts. J. Appl. Electrochem., 1988, 18(1): 80.

[69]

Iwadate Y, Harada T, Ohkubo T, et al. Pulsed neutron diffraction study of NaNO2 and KNO2 pure melts. Electrochemistry, 2009, 77(8): 741.

[70]

Y. Fang, C.H. Fang, L.J. Lin, and X.F. Qin, A study on the structure of calcium nitrate tetrahydrate molten salt, Salt Lake Res., 2007, No. 1, p. 39.

[71]

Zhou HX, Zhu FY, Fang WC, Zhou YG, Liu HY, Fang CH, Fang Y. Effect of additives on phase transition temperature and undercooling temperature of CaCl26H2O–Ca(NO3)24H2O and their molten salt structure. J. Mater. Sci. Eng., 2019, 37(1): 160.

[72]

Perelygin IS, Mikhailov GP. Manifestations of ion-ion interaction in the Raman spectra of the nitrate ion. J. Appl. Spectrosc., 1988, 48(5): 516.

[73]

Berg RW, Kerridge DH, Larsen PH. NaNO2 + NaNO3 phase diagram: New data from DSC and Raman spectroscopy. J. Chem. Eng. Data, 2006, 51(1): 34.

[74]

Xu KC, Chen Y. Temperature-dependent Raman spectra of mixed crystals of NaNO3-KNO3: Evidence for limited solid solutions. J. Raman Spectrosc., 1999, 30(3): 173.

[75]

Jayaraman S, Thompson AP, von Lilienfeld OA, Maginn EJ. Molecular simulation of the thermal and transport properties of three alkali nitrate salts. Ind. Eng. Chem. Res., 2010, 49(2): 559.

[76]

Ponyatenko NA, Radchenko IV. Study of structure of binary fused monovalent nitratesd with Ca(NO3)2, Ba(NO3)2 and Sr(NO3)2 by the method of Raman scattering. Ukr. J. Phys., 1969, 14(1): 20.

[77]

Ponyatenko NA, Radchenko IV. Orientational interaction and rotational motion of the NO ion in monovalent nitrate melts. Opt. Spectrosc., 1969, 26, 353.

[78]

Gao BL, Liu FG, Wang ZW. Raman spectra of NaNO2-KNO3-NaNO3 ternary molten salts. Rare Met., 2009, 28(S1): 581.

[79]

Zhao JY. Structure Study on the Ternary NaNO 3-KNO 3-NaNO 2 Molten Sallts, 2020, Xining, Qinghai Normal University, 77.

[80]

Hou HY, You JL, Wu YQ, Chen H, Jiang GC. Raman spectroscopic study of alkali carbonates. Chin. J. Light. Scatt., 2001, 13(3): 162.

[81]

L.J. Chen, J. Zuo, and C.J. Lin, In-situ Raman spectroscopy studies on the electrode process of cathode in MCFC, [in] Proceedings of the 13 th Chinese Symposium on Molecular Spectroscopy, Xiamen, 2004, p. 199.

[82]

Ohata H, Takeuchi K, Ui K, Koura N. The structure of molten lithium carbonate calculated by DFT and MD simulations. ECS Trans., 2007, 6(14): 57.

[83]

Koura N, Kohara S, Takeuchi K, et al. Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. J. Mol. Struct., 1996, 382(3): 163.

[84]

Wang YZ. Influence of Additives on the Structure and Properties of Aluminum Electrolysis Molten Salt system, 2015, Kunming, Kunming University of Science and Technology, 93.

[85]

S.L. Jiang, C.M. Ye, Y.L. Liu, et al., Insights into the effects of fluoride anions on the electrochemical behavior and solution structure of trivalent samarium in LiCl-KCl molten salt, Electrochim. Acta, 439(2023), art. No. 141733.

[86]

J.L. You, T. Zhao, S. Petrik, Y.Y. Wang, and X.W. Liu, In-situ high temperature Raman spectroscopy and quantum chemical Ab initio simulation on species in molten NaF-AlF3 fluorides, [in] Proceedings of the 17th National Symposium on Molecular Spectroscopy, Shaoguan, 2012, p. 223.

[87]

Wang J, Liu CL. Temperature and composition dependences of shear viscosities for molten alkali metal chloride binary systems by molecular dynamics simulation. J. Mol. Liq., 2019, 273, 447.

[88]

Y.L. Liu, J.H. Lan, L. Wang, et al., The influence of F ion on the electrochemical behavior and coordination properties of uranium in LiCl-KCl molten salt, Electrochimica Acta, 404(2022), art. No. 139573.

[89]

Wu YK, Yan GQ, Chen S, Wang LJ. Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts. Int. J. Miner. Metall. Mater., 2020, 27(12): 1644.

[90]

Song JX, Wang QY, Wu JY, Jiao SQ, Zhu HM. The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discuss., 2016, 190, 421.

[91]

Liu SS, Li SL, Liu CH, He JL, Song JX. Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl. Int. J. Miner. Metall. Mater., 2023, 30(5): 868.

[92]

Yuan R, C, Wan HL, et al. Effect of fluoride addition on electrochemical behaviors of V(III) in molten LiCl-KCl. Trans. Monferrous Met. Soc. China, 2022, 32(8): 2736.

[93]

X. Bai, S. Li, J. He, and J. Song, Effect of fluoride-ion on the electrochemical behavior of tantalum ion in NaCl-KCl molten salt, J. Electrochem. Soc., 169(2022), No. 8, art. No. 082504.

[94]

H. Guo, J. Li, H.L. Zhang, et al., Study on micro-structure and transport properties of KF-NaF-AlF3-Al2O3 system by first-principles molecular dynamics simulation, J. Fluorine Chem., 235(2020), art. No. 109546.

[95]

Wang CY. Raman Spectroscopy and Theoretical Calculation of Metal Fluoride and Fluoride Oxides in Fluoride Molten Salt, 2021, Beijing, University of Chinese Academy of Sciences, 135.

[96]

X. Chen, H. Fu, and C. Wang, Influence of oxide ions on the speciation in molten KF-ZrF4 and KF-HfF4: A Raman spectroscopic and theoretical investigation, J. Mol. Liq., 342(2021), art. No. 117476.

[97]

Wang X, Liao CF, Luo LS. Effect of Nd2O3 on the properties and structure of AlF3-(Na/Li)F-Al2O3 melt. Chin. Rare Earth, 2017, 38(5): 1.

[98]

X.Y. Liu, Y.J. Li, B.Z. Wang, and C.Y. Wang, Raman and density functional theory studies of lutecium fluoride and oxyfluoride structures in molten FLiNaK, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 251(2021), art. No. 119435.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/