Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source

Xinyuan Zhang , Chenkang Xia , Weihai Liu , Mingyuan Hao , Yang Miao , Feng Gao

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1375 -1387.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1375 -1387. DOI: 10.1007/s12613-023-2605-x
Article

Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source

Author information +
History +
PDF

Abstract

As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm3, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m2/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.

Keywords

water glass / silicon carbide aerogel / microwave absorbing / thermal insulation performance

Cite this article

Download citation ▾
Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao, Feng Gao. Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(7): 1375-1387 DOI:10.1007/s12613-023-2605-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar S, Kumar A, Sampath K, et al. Fabrication and erosion studies of C-SiC composite Jet Vanes in solid rocket motor exhaust. J. Eur. Ceram. Soc., 2011, 31(13): 2425.

[2]

Sun GB, Dong BX, Cao MH, Wei BQ, Hu CW. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater., 2011, 23(6): 1587.

[3]

Zhu WM, Wang L, Zhao R, Ren JW, Lu GZ, Wang YQ. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale, 2011, 3(7): 2862.

[4]

Micheli D, Vricella A, Pastore R, Marchetti M. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon, 2014, 77, 756.

[5]

A. Ansari and M.J. Akhtar, Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications, Mater. Res. Express, 4(2017), No. 1, art. No. 016304.

[6]

Quan B, Liang XH, Ji GB, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd., 2017, 728, 1065.

[7]

Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, 140, 696.

[8]

Green M, Chen XB. Recent progress of nanomaterials for microwave absorption. J. Materiomics, 2019, 5(4): 503.

[9]

Zhao B, Guo XQ, Zhao WY, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces, 2016, 8(42): 28917.

[10]

Zhao B, Liu JW, Guo XQ, et al. Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Phys. Chem. Chem. Phys., 2017, 19(13): 9128.

[11]

Zhao B, Zhang X, Deng JS, et al. A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Phys. Chem. Chem. Phys., 2018, 20(45): 28623.

[12]

Wang Y, Gao X, Fu YQ, et al. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Composites Part B, 2019, 169, 221.

[13]

Chen LX, Zhao J, Wang L, et al. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. Ceram. Int., 2019, 45(9): 11756.

[14]

Wang Y, Gao X, Lin CH, Shi LY, Li XH, Wu GL. Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd., 2019, 785, 765.

[15]

Zhang HX, Wang BB, Feng AL, et al. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Composites Part B, 2019, 167, 690.

[16]

Kong Y, Shen XD, Cui S, Fan MH. Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation. Ceram. Int., 2014, 40(6): 8265.

[17]

An ZM, Ye CS, Zhang RB, Qu Q. Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding. J. Sol-Gel Sci. Technol., 2019, 89(3): 623.

[18]

Wang W, Zhao YF, Yan WQ, Cui S, Wu XD, Suo H. Preparation of the novel B4C-SiC composite aerogel with high compressive strength and low thermal conductivity. J. Porous Mater., 2021, 28(3): 703.

[19]

Jiang Y, Chen Y, Liu YJ, Sui GX. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J., 2018, 337, 522.

[20]

Kong Y, Zhong Y, Shen XD, et al. Facile synthesis of resorcinol-formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels. J. Non-Cryst. Solids, 2012, 358(23): 3150.

[21]

Cao LY, Liu YS, Zhang YH, et al. Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers. J. Adv. Ceram., 2022, 11(2): 247.

[22]

Norouzi M, Elhamifar D, Mirbagheri R. Phenylene-based periodic mesoporous organosilica supported melamine: An efficient, durable and reusable organocatalyst. Microporous Mesoporous Mater., 2019, 278, 251.

[23]

Lei L, Fu ZB, Yi Y, Huang XL, Tu H, Wang CY. Preparation and characterization of RF aerogel on UV irradiation method. J. Sol-Gel Sci. Technol., 2014, 72(3): 553.

[24]

Chen Y, Yang L, Xu SH, et al. Ultralight aerogel based on molecular-modified poly(m-phenylenediamine) crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption. RSC Adv., 2019, 9(40): 22950.

[25]

Y. Huang, X.Y. Peng, X.D. Liu, C. Chen, and X.P. Han, Development of SiC fiber through heat treatment of silica aerogel by in situ curing, Mater. Lett., 283(2021), art. No. 128797.

[26]

M.H. Tai, B.C. Mohan, Z.Y. Yao, and C.H. Wang, Superhydrophobic leached carbon black/poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water, Chemosphere, 286(2022), art. No. 131520.

[27]

Wei J, Li XT, Wang Y, Chen B, Zhang MJ, Qin CM. Photoluminescence property of inexpensive flexible SiC nanowires membrane by electrospinning and carbothermal reduction. J. Am. Ceram. Soc., 2020, 103(11): 6187.

[28]

Du B, Zhang DY, Qian JJ, et al. Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance. Adv. Compos. Hybrid Mater., 2021, 4(4): 1281.

[29]

Chen K, Bao ZH, Du A, et al. Synthesis of resorcinol-formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide. Microporous Mesoporous Mater., 2012, 149(1): 16.

[30]

Zirakjou A, Kokabi M. SiC/C aerogels from biphenylenebridged polysilsesquioxane/clay mineral nanocomposite aerogels. Ceram. Int., 2020, 46(2): 2194.

[31]

Li XT, Chen XH, Song HH. Preparation of silicon carbide nanowires via a rapid heating process. Mater. Sci. Eng. B, 2011, 176(1): 87.

[32]

Li CY, Xu Z, Ouyang HB, Chang LY, Huang JF, Liu YJ. Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure. Appl. Compos. Mater., 2020, 27(3): 131.

[33]

An GQ, Liu HL, Li HY, Chen Z, Li J, Li YJ. SiBCN ceramic aerogel/graphene composites prepared via sol–gel infiltration process and polymer-derived ceramics (PDCs) route. Ceram. Int., 2020, 46(6): 7001.

[34]

Feng JZ, Feng J, Zhang CR. Shrinkage and pore structure in preparation of carbon aerogels. J. Sol-Gel Sci. Technol., 2011, 59(2): 371.

[35]

K.J. Lee, Y.G. Kang, Y.H. Kim, S.W. Baek, and H. Hwang, Synthesis of silicon carbide powders from methyl-modified silica aerogels, Appl. Sci., 10(2020), No. 18, art. No. 6161.

[36]

Wang LJ, Zhao SY, Yang M. Structural characteristics and thermal conductivity of ambient pressure dried silica aero-gels with one-step solvent exchange/surface modification. Mater. Chem. Phys., 2009, 113(1): 485.

[37]

Zheng W, He XB, Wu M, Qu XH, Liu RJ, Guan DD. Graphite addition for SiC formation in diamond/SiC/Si composite preparation. Int. J. Miner. Metall. Mater., 2019, 26(9): 1166.

[38]

S.N. Zhang, H.Q. Pang, T.H. Fan, Q. Ye, Q.L. Cai, and X. Wu, Thermal insulation performance of SiC-doped silica aerogels under large temperature and air pressure differences, Gels, 8(2022), No. 5, art. No. 320.

[39]

Ye XL, Chen ZF, Zhang JX, Wu C, Xiang JF. SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures. Ceram. Int., 2021, 47(22): 31497.

[40]

Cai ZX, Su L, Wang HJ, et al. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C. ACS Appl. Mater. Interfaces, 2021, 13(14): 16704.

[41]

Ye XL, Chen ZF, Ai SF, et al. Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustainable Chem. Eng., 2019, 7(2): 2774.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/