Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells

Xiaomeng Li , Pengcheng Jia , Fanwen Meng , Xingyu Zhang , Yang Tang , Bo Song , Chang Gao , Liang Qin , Feng Teng , Yanbing Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1965 -1972.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1965 -1972. DOI: 10.1007/s12613-023-2604-y
Article

Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells

Author information +
History +
PDF

Abstract

The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells. However, because tin halide is a stronger Lewis acid, its crystallization rate is extremely fast, resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells. Herein, propylamine hydrobromide (PABr) was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films. Because propylamine cations are too large to enter the perovskite lattices, they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation. The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm−2 by reducing carrier recombination induced by defects. Furthermore, the device’s long-term illumination stability is improved after optimization, and the hysteresis effect is negligible. The addition of PABr results in a power conversion efficiency of 9.35%.

Keywords

tin-based perovskite solar cells / propylamine hydrobromide / passivation / crystallization

Cite this article

Download citation ▾
Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng, Yanbing Hou. Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1965-1972 DOI:10.1007/s12613-023-2604-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Green MA, Jiang YJ, Soufiani AM, Ho-Baillie A. Optical properties of photovoltaic organic-inorganic lead halide perovskites. J. Phys. Chem. Lett., 2015, 6(23): 4774.

[2]

Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 7(3): 982.

[3]

S.R. Wang, X. Zhang, W.K. Zhu, et al., Lewis base manipulated crystallization for efficient tin halide perovskite solar cells, Appl. Surf. Sci., 602(2022), art. No. 154393.

[4]

You P, Li GJ, Tang GQ, Cao JP, Yan F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci., 2020, 13(4): 1187.

[5]

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat. Photonics, 2014, 8(7): 506.

[6]

M. Pitaro, E.K. Tekelenburg, S.Y. Shao, and M.A. Loi, Tin halide perovskites: From fundamental properties to solar cells, Adv. Mater., 34(2022), No. 1, art. No. 2105844.

[7]

S. Gu, R.X. Lin, Q.L. Han, Y. Gao, H.R. Tan, and J. Zhu, Tin and mixed lead–tin halide perovskite solar cells: Progress and their application in tandem solar cells, Adv. Mater., 32(2020), No. 27, art. No. 1907392.

[8]

National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart [2022-08 -18]. https://www.nrel.gov/pv/cell-efficiency.html?tdsourcetag=s_pcqq_aiomsg.

[9]

Que ZB, Chu L, Zhai SB, et al. Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells. Int. J. Miner. Metall. Mater., 2022, 29(6): 1280.

[10]

Cao JP, Yan F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci., 2021, 14(3): 1286.

[11]

Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev., 2019, 119(5): 3418.

[12]

R.L. Milot, M.T. Klug, C.L. Davies, et al., The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films, Adv. Mater., 30(2018), No. 44, art. No. 1804506.

[13]

Wu TH, Liu X, Luo XH, et al. Lead-free tin perovskite solar cells. Joule, 2021, 5(4): 863.

[14]

W.Y. Gao, P.Z. Li, J.B. Chen, C.X. Ran, and Z.X. Wu, Interface engineering in tin perovskite solar cells, Adv. Mater. Interfaces, 6(2019), No. 24, art. No. 1901322.

[15]

Aldamasy M, Iqbal Z, Li GX, et al. Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys., 2021, 23(41): 23413.

[16]

X. Zhang, S.R. Wang, W.K. Zhu, Z.Y. Cao, A.L. Wang, and F. Hao, The voltage loss in tin halide perovskite solar cells: Origins and perspectives, Adv. Funct. Mater., 32(2022), No. 8, art. No. 2108832.

[17]

B. Chen, S.R. Wang, X. Zhang, W.K. Zhu, Z.Y. Cao, and F. Hao, Reducing the interfacial voltage loss in tin halides perovskite solar cells, Chem. Eng. J., 445(2022), art. No. 136769.

[18]

Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234.

[19]

K. Nishimura, M.A. Kamarudin, D. Hirotani, et al., Lead-free tin-halide perovskite solar cells with 13% efficiency, Nano Energy, 74(2020), art. No. 104858.

[20]

Konstantakou M, Stergiopoulos T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A, 2017, 5(23): 11518.

[21]

W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, and L.S. Liao, Tin halide perovskites: Progress and challenges, Adv. Energy Mater., 10(2020), No. 13, art. No. 1902584.

[22]

Z.H. Zhang, Z.C. Li, L.Y. Meng, S.Y. Lien, and P. Gao, Per-ovskite-based tandem solar cells: Get the most out of the sun, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2001904.

[23]

Liu X, Wu TH, Luo XH, et al. Lead-free perovskite solar cells with over 10% efficiency and size 1 cm2 enabled by solvent-crystallization regulation in a two-step deposition method. ACS Energy Lett., 2022, 7(1): 425.

[24]

Zhang Z, Kamarudin MA, Baranwal AK, et al. Indent-free vapor-assisted surface passivation strategy toward tin halide perovskite solar cells. ACS Appl. Mater. Interfaces, 2022, 14(31): 36200.

[25]

Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/ silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370(6522): 1300.

[26]

X. Liu, T.H. Wu, C.Y. Zhang, Y.Q. Zhang, H. Segawa, and L.Y. Han, Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106560.

[27]

Bumrungsan W, Hongsith K, Yarangsi V, et al. Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide. Int. J. Miner. Metall. Mater., 2022, 29(11): 1963.

[28]

Xu YT, Jiang KJ, Wang PC, et al. Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylam-monium iodide for efficient and stable tin perovskite solar cells. New J. Chem., 2022, 46(5): 2259.

[29]

Dai ZS, Lv T, Barbaud J, et al. Stable tin perovskite solar cells developed via additive engineering. Sci. China Mater., 2021, 64(11): 2645.

[30]

X. Liu, Y.B. Wang, T.H. Wu, et al., Efficient and stable tin per-ovskite solar cells enabled by amorphous-polycrystalline structure, Nat. Commun., 11(2020), No. 1, art. No. 2678.

[31]

M.M. Zhang, Z.G. Zhang, H.H. Cao, et al., Recent progress in inorganic tin perovskite solar cells, Mater. Today Energy, 23(2022), art. No. 100891.

[32]

G.X. Li, Z.H. Su, M. Li, et al., Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells, Adv. Energy Mater., 11(2021), No. 32, art. No. 2101539.

[33]

Liu X, Wu TH, Chen JY, et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci., 2020, 13(9): 2896.

[34]

B.B. Yu, Z.H. Chen, Y.D. Zhu, et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%, Adv. Mater., 33(2021), No. 36, art. No. 2102055.

[35]

Li HS, Jiang XY, Wei Q, et al. Low-dimensional inorganic tin perovskite solar cells prepared by templated growth. Angew. Chem. Int. Ed., 2021, 60(30): 16330.

[36]

Kamarudin MA, Sahamir SR, Nishimura K, et al. Suppression of defect and trap density through dimethylammonium-substituted tin perovskite solar cells. ACS Mater. Lett., 2022, 4(9): 1855.

[37]

Gu FD, Wang CB, Zhao ZR, et al. Tin(II) acetylacetonate as a new type of tin compensator additive for tin-based per-ovskite solar cells. ACS Appl. Mater. Interfaces, 2021, 13(37): 44157.

[38]

Z. Zhang, M.A. Kamarudin, A.K. Baranwal, et al., Sequential passivation for lead-free tin perovskite solar cells with high efficiency, Angew. Chem. Int. Ed., 61(2022), No. 42, art. No. 202210101.

[39]

S.R. Wang, L. Yan, W.K. Zhu, et al., Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells, Nano Energy, 99(2022), art. No. 107416.

[40]

H.J. Yan, B.W. Wang, X.F. Yan, et al., Efficient passivation of surface defects by lewis base in lead-free tin-based perovskite solar cells, Mater. Today Energy, 27(2022), art. No. 101038.

[41]

Zhang Z, Wang L, Baranwal AK, et al. Enhanced efficiency and stability in Sn-based perovskite solar cells by trimethylsilyl halide surface passivation. J. Energy Chem., 2022, 71, 604.

[42]

Jokar E, Chien CH, Fathi A, Rameez M, Chang YH, Diau EWG. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci., 2018, 11(9): 2353.

[43]

C. Liu, J. Tu, X.T. Hu, et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1808059.

[44]

Jokar E, Chuang HS, Kuan CH, et al. Slow passivation and inverted hysteresis for hybrid tin perovskite solar cells attaining 13.5% via sequential deposition. J. Phys. Chem. Lett., 2021, 12(41): 10106.

[45]

B.H. Chang, B. Li., Z.X. Wang, et al., Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement, Adv. Funct. Mater., 32(2022), No. 12, art. No. 2107710.

[46]

Zhao PJ, Kim BJ, Jung HS. Passivation in perovskite solar cells: A review. Mater. Today Energy, 2018, 7, 267.

[47]

Tai QD, Guo XY, Tang GQ, et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed., 2019, 58(3): 806.

[48]

Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-efficiency perovskite solar cells. Chem. Rev., 2020, 120(15): 7867.

[49]

Y. Zhang, Y. Li, L. Zhang, et al., Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Adv. Energy Mater., 11(2021), No. 47, art. No. 2102538.

[50]

Yao DS, Zhang CM, Zhang SL, et al. 2D–3D mixed organic-inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces, 2019, 11(33): 29753.

[51]

D.D. Wu, P.C. Jia, W.T. Bi, et al., Enhanced performance of tin halide perovskite solar cells by addition of hydrazine mono-hydrobromide, Org. Electron., 82(2020), art. No. 105728.

[52]

P.C. Jia, L. Qin, D. Zhao, et al., The trapped charges at grain boundaries in perovskite solar cells, Adv. Funct. Mater., 31(2021), No. 49, art. No. 2107125.

[53]

Ran CX, Gao WY, Li JR, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule, 2019, 3(12): 3072.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/