Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel
Peng Han , Zhipeng Liu , Zhenjia Xie , Hua Wang , Yaohui Jin , Xuelin Wang , Chengjia Shang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (7) : 1329 -1337.
Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel
This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate. The quarter-thickness (1/4t) and half-thickness (1/2t) regions of the plate exhibited similar ductility and toughness after quenching. After tempering, the 1/4t region exhibited ∼50% and ∼25% enhancements in both the total elongation and low-temperature toughness at −40°C, respectively, without a decrease in yield strength, whereas the toughness of the 1/2t region decreased by ∼46°%. After quenching, both the 1/4t and 1/2t regions exhibited lower bainite and lath martensite concentrations, but only the 1/2t region exhibited microstructure bands. Moreover, the tempered 1/4t region featured uniformly dispersed short rod-like M23C6 carbides, and spherical MC precipitates with diameters of ∼20–100 nm and <20 nm, respectively. The uniformly dispersed nanosized M23C6 carbides and MC precipitates contributed to the balance of high strength and high toughness. The band microstructure of the tempered 1/2t region featured a high density of large needle-like M3C carbides. The length and width of the large M3C carbides were ∼200–500 nm and ∼20–50 nm, respectively. Fractography analysis revealed that the high density of large carbides led to delamination cleavage fracture, which significantly deteriorated toughness.
band microstructure / carbides / toughness / heavy gauge steel / centerline segregation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
X. Chen, Q.W. Cai, B.S. Xie, Y. Yun, and Z.Y. Zhou, Simulation of microstructure evolution in ultra-heavy plates rolling process based on Abaqus secondary development, Steel Res. Int., 89(2018), No. 12, art. No. 1800409. |
| [5] |
|
| [6] |
|
| [7] |
Z.J. Xie, Q. Li, Z.P. Liu, et al., Enhanced ductility and toughness by tailoring heterogenous microstructure in an ultra-heavy gauge high strength steel with severe centerline segregation, Mater. Lett., 323(2022), art. No. 132525. |
| [8] |
F.J. Guo, X.L. Wang, W.L. Liu, et al., The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel, Steel Res. Int., 89(2018), No. 12, art. No. 1800407. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
J. Wang, F. Guo, Z. Wang, Z. Xie, C. Shang, and X. Wang, Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel, Mater. Lett., 267(2020), art. No. 127512. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |