Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys
Dong Wang , Chen Ma , Jinyu Liu , Weidong Li , Wei Shang , Ning Peng , Yuqing Wen
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1128 -1139.
Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys
Magnesium (Mg) alloys, the lightest metal construction material used in industry, play a vital role in future development. However, the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications. Therefore, a micro-arc oxidation/graphene oxide/stearic acid (MAO/GO/SA) superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation (MAO) technology, electrodeposition technique, and self-assembly technology. The composition and microstructure of the coating were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and Raman spectroscopy. The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization, electrochemical impedance spectroscopy tests, and salt spray tests. The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity, and it attained a contact angle of 159.53° ± 2°. The MAO/GO/SA composite coating exhibited high resistance to corrosion, according to electrochemical and salt spray tests.
magnesium alloy / composite coating / superhydrophobic / corrosion resistance / anti-soiling performance
| [1] |
M. Yin, L.F. Hou, Z.W. Wang, et al., Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy, Corros. Sci., 184(2021), art. No. 109378. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
S. García-Rodríguez, B. Torres, N. Pulido-González, E. Otero, and J. Rams, Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments, Surf. Coat. Technol., 378(2019), art. No. 124994. |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
X. He, R.G. Song, and D.J. Kong, Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation, Appl. Surf. Sci., 497(2019), art. No. 143703. |
| [15] |
W. Shang, F. Wu, S.Q. Jiang, Y.Q. Wen, N. Peng, and J.Q. Jiang, Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys, J. Mol. Liq., 330(2021), art. No. 115606. |
| [16] |
|
| [17] |
|
| [18] |
J. Kuang, Z. Ba, Z.Z. Li, Z.Z. Wang, and J. Qiu, The study on corrosion resistance of superhydrophobic coatings on magnesium, Appl. Surf. Sci., 501(2020), art. No. 144137. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
J.F. Wei, B.C. Li, L.Y. Jing, N. Tian, X. Zhao, and J.P. Zhang, Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating, Chem. Eng. J., 390(2020), art. No. 124562. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
F. Gao, Y.D. Hu, Z.H. Gong, et al., Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys, Mater. Sci. Eng. C: Mater. Biol. Appl., 104(2019), art. No. 109947. |
| [29] |
Y. Zhang, J.P. Wang, Z. Zhang, et al., Silane-modified graphene oxide composite as a promising corrosion-inhibiting film for magnesium alloy AZ31, Front. Mater., 8(2021), art. No. 737792. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
S.Q. Jiang, Z.Y. Zhang, D. Wang, Y.Q. Wen, N. Peng, and W. Shang, ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.07.027 |
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |