Corrosion, mechanical and microstructural properties of aluminum 7075—carbon nanotube nanocomposites for robots in corrosive environments

Arun David , Satheesh Kumar Gopal , Poovazhagan Lakshmanan , Amith Sukumaran Chenbagam

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1140 -1151.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1140 -1151. DOI: 10.1007/s12613-022-2592-3
Article

Corrosion, mechanical and microstructural properties of aluminum 7075—carbon nanotube nanocomposites for robots in corrosive environments

Author information +
History +
PDF

Abstract

The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection, such as leakage, crack, gas, and corrosion detection, which are standard applications common in the current industrial scenario. The question that is frequently overlooked in all these cases is the inherent resistance of the robots to corrosion. The mechanical, microstructural, and corrosion properties of aluminum 7075 incorporated with various weight percentages (0, 0.5wt%, 1wt%, and 1.5wt%) of carbon nanotubes (CNTs) are discussed. It is fabricated using a rotational ultrasonication with mechanical stirring (RUMS)-based casting method for improved corrosion resistance without compromising the mechanical properties of the robot. 1wt% CNTs—aluminum nanocomposite shows good corrosion and mechanical properties, meeting the requirements imposed by the sewage environment of the robot.

Keywords

aluminum 7075 / carbon nanotubes / rotational ultrasonication with mechanical stirring / mechanical characterization / microstructure / robot

Cite this article

Download citation ▾
Arun David, Satheesh Kumar Gopal, Poovazhagan Lakshmanan, Amith Sukumaran Chenbagam. Corrosion, mechanical and microstructural properties of aluminum 7075—carbon nanotube nanocomposites for robots in corrosive environments. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(6): 1140-1151 DOI:10.1007/s12613-022-2592-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhushan RK, Kumar S. Influence of SiC particles distribution and their weight percentage on 7075 Al alloy. J. Mater. Eng. Perform., 2011, 20(2): 317.

[2]

Kalkanlı A, Yılmaz S. Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Mater. Des., 2008, 29(4): 775.

[3]

Choi SM, Awaji H. Nanocomposites—A new material design concept. Sci. Technol. Adv. Mater., 2005, 6(1): 2.

[4]

Gopalakannan S, Senthilvelan T. Synthesis and characterisation of Al7075 reinforced with SiC and B4C nano particles fabricated by ultrasonic cavitation method. J. Sci. Ind. Res., 2015, 74(5): 281.

[5]

Imran M, Khan ARA. Characterization of Al-7075 metal matrix composites: A review. J. Mater. Res. Technol., 2019, 8(3): 3347.

[6]

Baradeswaran A, Perumal AE. Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites. Composites Part B, 2014, 56, 464.

[7]

Baradeswaran A, Perumal AE. Wear and mechanical characteristics of Al7075/graphite composites. Composites Part B, 2014, 56, 472.

[8]

Khdair AI, Fathy A. Enhanced strength and ductility of Al—SiC nanocomposites synthesized by accumulative roll bonding. J. Mater. Res. Technol., 2020, 9(1): 478.

[9]

Kumar GBV, Rao CSP, Selvaraj N, Bhagyashekar MS. Studies on Al6061—SiC and Al7075—Al2O3 metal matrix composites. J. Miner. Mater. Charact. Eng., 2010, 9(1): 43.

[10]

Jokhio MH, Panhwer MI, Unar MA. Manufacturing of aluminum composite material using stir casting process. Mehran Uni. Res. J. Eng. Technol., 2016, 30(1): 53.

[11]

Pardo A, Merino MC, Merino S, Viejo F, Carboneras M, Arrabal R. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corros. Sci., 2005, 47(7): 1750.

[12]

Pinto GM, Nayak N, Nityananda Shetty A. Corrosion behaviour of 6061 Al—15vol. Pct. SiC composite and its base alloy in a mixture of 1: 1 hydrochloric and sulphuric acid medium. Int. J. Electrochem. Sci., 2009, 4(10): 1452.

[13]

Toptan F, Alves AC, Kerti I, Ariza E, Rocha LA. Corrosion and tribocorrosion behaviour of Al—Si—Cu—Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution. Wear, 2013, 306(1–2): 27.

[14]

Candan S. An investigation on corrosion behaviour of pressure infiltrated Al—Mg alloy/SiCp composites. Corros. Sci., 2009, 51(6): 1392.

[15]

Li JF, Peng ZW, Li CX, Jia ZQ, Chen WJ, Zheng ZQ. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans. Nonferrous Met. Soc. China, 2008, 18(4): 755.

[16]

Liu P, Yang SE, Chen YS, et al. Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects. Ceram. Int., 2020, 46(12): 19655.

[17]

Y. Zhang, Q. Wang, G. Chen, and C.S. Ramachandran, Mechanical, tribological and corrosion physiognomies of CNT—Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process, Surf. Coat. Technol., 403(2020), art. No. 126380.

[18]

B. Chen, K. Kondoh, J. S. Li, and M. Qian, Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in situ alumina nanoparticles, Composites Part B, 183(2020), art. No. 107691.

[19]

Laha T, Agarwal A, McKechnie T, Seal S. Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A, 2004, 381(1–2): 249.

[20]

Rutkowska A, Bawazeer TM, Macpherson JV, Unwin PR. Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT—CNT—UMEs). Phys. Chem. Chem. Phys., 2011, 13(12): 5223.

[21]

Deng CF, Zhang XX, Wang DZ, Lin Q, Li AB. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater. Lett., 2007, 61(8–9): 1725.

[22]

Deng CF, Wang DZ, Zhang XX, Li AB. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A, 2007, 444(1–2): 138.

[23]

Ghazanlou SI, Eghbali B. Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through the stir casting process. Int. J. Miner. Metall. Mater., 2021, 28(7): 1204.

[24]

Sridhar I, Narayanan KR. Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci., 2009, 44(7): 1750.

[25]

Kannan C, Ramanujam R. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J. Adv. Res., 2017, 8(4): 309.

[26]

Laha T, Chen Y, Lahiri D, Agarwal A. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. A Appl. Sci. Manuf., 2009, 40(5): 589.

[27]

Shanbhag VV, Yalamoori NN, Karthikeyan S, Ramanujam R, Venkatesan K. Fabrication, surface morphology and corrosion investigation of Al7075—Al2O3 matrix composite in sea water and industrial environment. Procedia Eng., 2014, 97, 607.

[28]

Amith SC, Lakshmanan P. Effects of simultaneous rotational ultrasonication and vortex-induced casting technique on particle distribution and grain refinement in AA7075/h-BN nanocomposites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2022, 236(8): 1648.

[29]

Abbasipour B, Niroumand B, Monir Vaghefi SM, Abedi M. Tribological behavior of A356—CNT nanocomposites fabricated by various casting techniques. Trans. Nonferrous Met. Soc. China, 2019, 29(10): 1993.

[30]

Liao H, Sun Y, Sun G. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Mater. Sci. Eng. A, 2002, 335(1–2): 62.

[31]

Anne G, Ramesh MR, Arya SB, Sahu S. Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg—2%Zn/Al-7075 multilayered composite. J. Mater. Eng. Perform., 2017, 26(4): 1726.

[32]

Mouritz AP. Introduction to Aerospace Materials, 2012, Amsterdam, Elsevier

[33]

Mohan K, Suresh JA, Ramu P, Jayaganthan R. Microstructure and mechanical behavior of Al7075—T6 subjected to shallow cryogenic treatment. J. Mater. Eng. Perform., 2016, 25(6): 2185.

[34]

Yazdian N, Karimzadeh F, Tavoosi M. Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing. J. Alloys Compd., 2010, 493(1–2): 137.

[35]

Hashim H, Salleh MS, Omar MZ, Sulong AB. Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method. J. Mater. Res. Technol., 2019, 8(2): 2223.

[36]

Barati F, Esfandiari M. The effect of multi-walled carbon nanotubes, as the reinforcement phase, on the hardness and bending strength of aluminum alloy 7075. J. Stress Anal., 2021, 6(1): 61.

[37]

Puga H, Carneiro VH, Barbosa J, Soares D. Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys. Met. Mater. Int., 2016, 22(5): 863.

[38]

Kumar A, Pal K, Mula S. Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075—2% SiC micro- and nanocomposites by friction stir processing. J. Manuf. Process., 2017, 30, 1.

[39]

R.A. Manikandan and T.V. Arjunan, Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite, Composites Part B, 183(2020), art. No. 107668.

[40]

Samal P, Vundavilli PR, Meher A, Mahapatra MM. Reinforcing effect of multi-walled carbon nanotubes on microstructure and mechanical behavior of AA5052 composites assisted by in situ TiC particles. Ceram. Int., 2022, 48(6): 8245.

[41]

Wang XF, Guo MX, Ma CQ, Chen JB, Zhang JS, Zhuang LZ. Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al—Mg—Si—Cu alloy. Int. J. Miner. Metall. Mater., 2018, 25(8): 957.

[42]

Suresh S, Gowd GH, Deva Kumar ML. Mechanical properties of AA 7075/Al2O3/SiC nano-metal matrix composites by stir-casting method. J. Inst. Eng. India Ser. D, 2019, 100(1): 43.

[43]

Pineau A, Benzerga AA, Pardoen T. Failure of metals I: Brittle and ductile fracture. Acta Mater., 2016, 107, 424.

[44]

Deore HA, Mishra J, Rao AG, Mehtani H, Hiwarkar VD. Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites. Surf. Coat. Technol., 2019, 374, 52.

[45]

B. Zhou, B. Liu, S.G. Zhang, R. Lin, Y. Jiang, and X.Y. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties, J. Alloys Compd., 879(2021), art. No. 160407.

[46]

Andreatta F, Terryn H, De Wit JHW. Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075—T6. Corros. Sci., 2003, 45(8): 1733.

[47]

Navaser M, Atapour M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J. Mater. Sci. Technol., 2017, 33(2): 155.

[48]

Halambek J, Bubalo MC, Redovniković IR, Berković K. Corrosion behaviour of aluminium and AA5754 alloy in 1% acetic acid solution in presence of laurel oil. Int. J. Electrochem. Sci, 2014, 9(10): 5496.

[49]

Ghosh KS, Mukhopadhyay S, Konar B, Mishra B. Study of aging and electrochemical behaviour of Al—Li—Cu—Mg alloys. Mater. Corros., 2013, 64(10): 890.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/