Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory

Chao Gu , Ziyu Lyu , Qin Hu , Yanping Bao

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 744 -755.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 744 -755. DOI: 10.1007/s12613-022-2588-z
Article

Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory

Author information +
History +
PDF

Abstract

Ca-SiO2 compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in Ca-SiO2 system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of Ca-SiO2 compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate (γ-C2S), alpha-prime (L) dicalcium silicate (α′L-C2S), alpha-prime (H) dicalcium silicate (α′L-C2S), alpha dicalcium silicate (α-C2S), rankinite (C3S2), hatrurite (C3S), wollastonite (CS), and pseudowollastonite (Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of 0.249–0.281. This study provided further understanding concerning the Ca-SiO2 compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.

Keywords

Ca-SiO2 / density functional theory / structural property / electronic property / mechanical property

Cite this article

Download citation ▾
Chao Gu, Ziyu Lyu, Qin Hu, Yanping Bao. Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 744-755 DOI:10.1007/s12613-022-2588-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang L, Song B, Yang ZB, et al. Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel. Int. J. Miner. Metall. Mater., 2021, 28(12): 1940.

[2]

Feng H, Lu PC, Li HB, Jiang ZH. Effect of Mg pretreatment and Ce addition on cleanliness and inclusion evolution in high-nitrogen stainless bearing steels. Metall. Mater. Trans. B, 2022, 53(2): 864.

[3]

Wang JJ, Zhang LF, Cheng G, Ren Q, Ren Y. Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction. Int. J. Miner. Metall. Mater., 2021, 28(8): 1298.

[4]

Metals, 2021, 11(12) art. No. 1973

[5]

Liu CS, Kacar Y, Webler B, Pistorius PC. Chemical composition modification of inclusions in steels by controlled Ca treatment. Metall. Mater. Trans. B, 2021, 52(5): 2837.

[6]

Liu W, Yang SF, Li JS, Wang F, Yang HB. Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag. J. Iron Steel Res. Int., 2019, 26(11): 1147.

[7]

Wang WS, Zhu HY, Song MM, Li JL, Xue ZL. Effect of ferromanganese additions on non-metallic inclusion characteristics in TRIP steel. J. Iron Steel Res. Int., 2022, 29(9): 1464.

[8]

Ashizuka M, Aimoto Y, Okuno T. Mechanical properties of sintered silicate crystals (Part 1). J. Ceram. Soc. Jpn, 1989, 97(1125): 544.

[9]

Jiang QX, Bertolo VM, Popovich VA, Sietsma J, Walters CL. Relating matrix stress to local stress on a hard micro-structural inclusion for understanding cleavage fracture in high strength steel. Int. J. Fract., 2021, 232(1): 1.

[10]

Xiao W, Bao YP, Gu C, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods. Int. J. Miner. Metall. Mater., 2021, 28(5): 804.

[11]

Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int. J. Fatigue, 2014, 64, 114.

[12]

Ayoub SA, Lagowski JB. Optimizing the performance of the bulk heterojunction organic solar cells based on DFT simulations of their interfacial properties. Mater. Des., 2018, 156, 558.

[13]

X.G. Gong, W.W. Xu, C. Cui, et al., Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations, Mater. Des., 196(2020), art. No. 109174.

[14]

J. Hui, X.Y. Zhang, T. Liu, W.G. Liu, and B. Wang, First-principles calculation of twin boundary energy and strength/embrittlement in hexagonal close-packed titanium, Mater. Des., 213(2022), art. No. 110331.

[15]

Zhang B, Xiao JS, Jiao SQ, Zhu HM. Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy. Int. J. Miner. Metall. Mater., 2022, 29(4): 787.

[16]

M.I. Khan, H. Arshad, M. Rizwan, et al., Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): A DFT study, J. Alloys Compd., 819(2020), art. No. 152964.

[17]

Cinthia AJ, Priyanga GS, Rajeswarapalanichamy R, Iyakutti K. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M = Be, Mg, Ca, Sr, Ba). J. Phys. Chem. Solids, 2015, 79, 23.

[18]

Dar SA, Srivastava V, Sakalle UK, Pagare G. Insight into structural, electronic, magnetic, mechanical, and thermodynamic properties of actinide perovskite BaPuO3. J. Supercond. Nov. Magn., 2018, 31(10): 3201.

[19]

Liu XJ, Yang JC, Zhang F, Fu XY, Li HW, Yang CQ. Experimental and DFT study on cerium inclusions in clean steels. J. Rare Earths, 2021, 39(4): 477.

[20]

Edrees SJ, Shukur MM, Obeid MM. First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Comput. Condens. Matter, 2018, 14, 20.

[21]

Rejmak P, Dolado JS, Aranda MAG, Ayuela A. First-principles calculations on polymorphs of dicalcium silicate-Belite, a main component of Portland cement. J. Phys. Chem. C, 2019, 123(11): 6768.

[22]

Bale CW, Chartrand P, Degterov SA, et al. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189.

[23]

Remy C, Andrault D, Madon M. High-temperature, high-pressure X-ray investigation of dicalcium silicate. J. Am. Ceram. Soc., 1997, 80(4): 851.

[24]

Sasaki K, Ishida H, Okada Y, Mitsuda T. Highly reactive β-dicalcium silicate: V, influence of specific surface area on hydration. J. Am. Ceram. Soc., 1993, 76(4): 870.

[25]

Toraya H, Yamazaki S. Simulated annealing structure solution of a new phase of dicalcium silicate Ca2SiO4 and the mechanism of structural changes from α-dicalcium silicate hydrate to γ′L-dicalcium silicate via the new phase. Acta Crystallogr. Sect. B, 2002, 58(4): 613.

[26]

Kriven WM. Possible alternative transformation tougheners to zirconia: Crystallographic aspects. J. Am. Ceram. Soc., 1988, 71(12): 1021.

[27]

Seryotkin YV, Sokol EV, Kokh SN. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, 2012, 134–135, 75.

[28]

Gasparik T, Wolf K, Smith CM. Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am. Mineral., 1994, 79, 1219.

[29]

Minerals, 2021, 11(6) art. No. 652

[30]

Zadov AE, Gazeev VM, Pertsev NN, et al. Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4). Dokl. Earth Sci., 2008, 423(2): 1431.

[31]

Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 2002, 14(11): 2717.

[32]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[33]

C.C. Qi, D. Spagnoli, and A. Fourie, Structural, electronic, and mechanical properties of calcium alumínate cements: Insight from first-principles theory, Constr. Build. Mater., 264(2020), art. No. 120259.

[34]

Zhang YY, Liu X, Xiong ZH, Zhang ZG. Compressional behavior of MgCr2O4 spinel from first-principles simulation. Sci. China Earth Sci., 2016, 59(5): 989.

[35]

Saravana Karthikeyan SK, Santhoshkumar P, Joe YC, et al. Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations. J. Phys. Chem. C, 2018, 122(42): 24235.

[36]

Eysel W, Hahn T. Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4. Z. Krist. Cryst. Mater, 1970, 131(1–6): 322.

[37]

Chen MY, Xia ZG, Molokeev MS, Liu QL. Structural phase transformation and luminescent properties of Ca(2−x)SrxSiO4: Ce3+ orthosilicate phosphors. Inorg. Chem., 2015, 54(23): 11369.

[38]

Ll’Inets AM, Malinovskii YA, Nevskii NN. Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5. Sov. Phys. Dokl., 1985, 20, 191.

[39]

Kusachi I, Henmi C, Kawahara A, Henmi K. The structure of rankinite. Mineral. J., 1975, 8(1): 38.

[40]

Manzano H, Dolado JS, Ayuela A. Structural, mechanical, and reactivity properties of tricalcium aluminate using first-principles calculations. J. Am. Ceram. Soc., 2009, 92(4): 897.

[41]

X. Gao, W.T. Zhang, X.M. Wang, X. Huang, and Z. Zhao, Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7: Eu3+ phosphors, J. Alloys Compd., 893(2022), art. No. 162265.

[42]

Materials, 2021, 15(1) art. No. 200

[43]

Kitagawa Y, Ueda J, Fujii K, et al. Site-selective Eu3+ luminescence in the monoclinic phase of YSiO2N. Chem. Mater., 2021, 33(22): 8873.

[44]

I. Petousis, D. Mrdjenovich, E. Ballouz, et al., High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, Sci. Data, 4(2017), art. No. 160134.

[45]

Y. Tao, Y.D. Mu, W.Q. Zhang, and F.Z. Wang, Screening out reactivity-promoting candidates for γ-Ca2SiO4 carbonation by first-principles calculations, Front. Mater., 7(2020), art. No. 299.

[46]

Phys. Rev. B, 2014, 90(22) art. No. 224104

[47]

Chandrasekar S, Santhanam S. A calculation of the bulk modulus of polycrystalline materials. J. Mater. Sci., 1989, 24(12): 4265.

[48]

Sun ZM, Li S, Ahuja R, Schneider JM. Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb, and Ta). Solid State Commun., 2004, 129(9): 589.

[49]

Demidenko NI, Stetsovskii AP. Correlation between elastic properties of wollastonite-based materials and sintering temperature. Glass Ceram., 2003, 60(7): 217.

[50]

Velez K, Maximilien S, Damidot D, Fantozzi G, Sorrentino F. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem. Concr. Res., 2001, 31(4): 555.

[51]

Abraham S, Bodnar R, Raines J, Wang YF. Inclusion engineering and metallurgy of calcium treatment. J. Iron Steel Res. Int., 2018, 25(2): 133.

[52]

Holappa L, Wijk O. Seeth-araman S. Inclusion engineering. Treatise on Process Metallurgy, 2014, Amsterdam, Elsevier, 347.

[53]

Costa e Silva A. Thermodynamic aspects of inclusion engineering in steels. Rare Met., 2006, 25(5): 412.

[54]

U. Karr, Y. Sandaiji, R. Tanegashima, et al., Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios, Int. J. Fatigue, 134(2020), art. No. 105525.

[55]

Fairchild DP, Howden DG, Clark WT. The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage. Metall. Mater. Trans. A, 2000, 31(3): 641.

[56]

Gu C, Liu WQ, Lian JH, Bao YP. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int. J. Miner. Metall. Mater., 2021, 28(5): 826.

[57]

Przybyla C, Prasannavenkatesan R, Salajegheh N, McDowell DL. Microstructure-sensitive modeling of high cycle fatigue. Int. J. Fatigue, 2010, 32(3): 512.

[58]

Gu C, Lian JH, Bao YP, Münstermann S. Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions. Mater. Sci. Eng. A, 2019, 751, 133.

[59]

C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/