Flow and penetration behavior of submerged side-blown gas

Shuai Zhu , Qiuyue Zhao , Xiaolong Li , Yan Liu , Tianci Li , Ting’an Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1067 -1077.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1067 -1077. DOI: 10.1007/s12613-022-2585-2
Article

Flow and penetration behavior of submerged side-blown gas

Author information +
History +
PDF

Abstract

To assess the widely used submerged side-blowing in pyrometallurgy, a high-speed camera-digital image processing-statistical approach was used to systematically investigate the effects of the gas flow rate, nozzle diameter, and inclination angle on the space-time distribution and penetration behavior of submerged side-blown gas in an air-water system. The results show that the gas motion gradually changes from a bubbling regime to a steady jetting regime and the formation of a complete jet structure as the flow rate increases. When the flow rate is low, a bubble area is formed by large bubbles in the area above the nozzle. When the flow rate and the nozzle diameter are significant, a bubble area is formed by tiny bubbles in the area above the nozzle. The increased inclination angle requires a more significant flow rate to form a complete jet structure. In the sampling time, the dimensionless horizontal and vertical penetration depths are Gaussian distributed. Decreasing the nozzle diameter and increasing the flow rate or inclination angle will increase the distribution range and discreteness. New correlations for a penetration depth with an error of ±20% were obtained through dimensional analysis. The dimensionless horizontal penetration depth of an argon-melt system in a 120 t converter calculated by the correlation proposed by the current study is close to the result calculated by a correlation in the literature and a numerical simulation result in the literature.

Keywords

submerged side-blowing / jet / high-speed camera / image processing / dimensional analysis

Cite this article

Download citation ▾
Shuai Zhu, Qiuyue Zhao, Xiaolong Li, Yan Liu, Tianci Li, Ting’an Zhang. Flow and penetration behavior of submerged side-blown gas. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(6): 1067-1077 DOI:10.1007/s12613-022-2585-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao HL, Zhao X, Mu LZ, Zhang LF, Yang LQ. Gas-liquid mass transfer and flow phenomena in a Peirce-Smith converter: A numerical model study. Int. J. Miner. Metall. Mater., 2019, 26(9): 1092.

[2]

L. Zhang, L. Zhang, and Y. He, The process and application of oxygen-enriched air side blown smelting of lead-zinc materials, [in] Proc. 9th International Symposium on Lead and Zinc Processing, San Diego, 2020, p. 291.

[3]

Zhang HL, Zhou CQ, Bing W, Chen YM. Numerical simulation of multiphase flow in a Vanyukov furnace. J. S. Afr. Inst. Min. Metall., 2015, 115(5): 457.

[4]

L. Chen, W.D. Bin, T.Z. Yang, W.F. Liu, and S. Bin, Research and industrial application of oxygen-rich side-blow bath smelting technology, [in] Proc. 4th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2013, p. 49.

[5]

L. Chen, W. Chen, H. Xiao, T.Z. Yang, W.F. Liu, and D.C. Zhang, Oxygen-rich side blow bath smelting technology — new developments in China, [in] Proc. 7th International Symposium on High-Temperature Metallurgical Processing, Nashville, 2016, p. 123.

[6]

Wei JH, He Y, Shi GM. Mathematical modeling of fluid flow in bath during combined side and top blowing AOD refining process of stainless steel: Mathematical model of the fluid flow. Steel Res. Int., 2011, 82(6): 703.

[7]

K.F. Feng, J.Y. Zhang, B. Wang, et al., Numerical simulation study on immersed side-blowing in C−H2 smelting reduction furnace, [in] Proc. 5th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2014, p. 451.

[8]

Iguchi M, Kodani S, Tokunaga H. Bubble and liquid flow characteristics during horizontal cold gas injection into a water bath. Steel Res. Int., 2000, 71(11): 435.

[9]

X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang, Emulsification and flow characteristics in copper oxygen-rich side-blown bath smelting process, Metals, 10(2020), No. 11, art. No. 1520.

[10]

R. Cheng, L.J. Zhang, Y.B. Yin, and J.M. Zhang, Effect of side blowing on fluid flow and mixing phenomenon in gas-stirred ladle, Metals, 11(2021), No. 2, art. No. 369.

[11]

Heikkinen EP, Fabritius TMJ, Kokkonen TMT, Härkki JJ. An experimental and computational study on the melting behaviour of AOD and chromium converter slags. Steel Res. Int., 2004, 75(12): 800.

[12]

Song KZ, Jokilaakso A. Transport phenomena in copper bath smelting and converting processes — A review of experimental and modeling studies. Miner. Process. Extr. Metall. Rev., 2022, 43(1): 107.

[13]

Chibwe DK, Akdogan G, Bezuidenhout GA, Kapusta J, Bradshaw S, Eksteen JJ. Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials. J. S. Afr. Inst. Min. Metall., 2015, 115(5): 349.

[14]

Kapusta JPT. Submerged gas jet penetration: A study of bubbling versus jetting and side versus bottom blowing in copper bath smelting. JOM, 2017, 69(6): 970.

[15]

Xiao YD, Lu TT, Zhou YG, Su QQ, Mu LZ, Wei T, Zhao HL, Liu FQ. Computational fluid dynamics study on enhanced circulation flow in a side-blown copper smelting furnace. JOM, 2021, 73(9): 2724.

[16]

Liu YT, Yang TZ, Chen Z, Zhu ZY, Zhang L, Huang Q. Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace. Trans. Nonferrous Met. Soc. China, 2020, 30(1): 249.

[17]

J.L. Svantesson, M. Ersson, and P.G. Jönsson, Effect of Froude number on submerged gas blowing characteristics, Materials (Basel), 14(2021), No. 3, art. No. 627.

[18]

Hoefele EO, Brimacombe JK. Flow regimes in submerged gas injection. Metall. Mater. Trans. B, 1979, 10(4): 631.

[19]

K. Bölke, M. Ersson, P.Y. Ni, M. Swartling, and P.G. Jönsson, Physical modeling study on the mixing in the new IronArc process, Steel Res. Int., 89(2018), No. 7, art. No. 1700555.

[20]

Bölke K, Ersson M, Imris M, Jönsson PG. Importance of the penetration depth and mixing in the IRONARC process. ISIJ Int., 2018, 58(7): 1210.

[21]

Wei GS, Zhu R, Tang TP, Dong K, Wu XT. Study on the impact characteristics of submerged CO2 and O2 mixed injection (S-COMI) in EAF steelmaking. Metall. Mater. Trans. B, 2019, 50(2): 1077.

[22]

Ma J, Song YP, Zhou P, Cheng W, Chu SG. A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns. Exp. Therm. Fluid Sci., 2018, 92, 409.

[23]

Harby K, Chiva S, Muñoz-Cobo JL. An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient. Exp. Therm. Fluid Sci., 2014, 53, 26.

[24]

Shi HH, Guo Q, Wang C, et al. Oscillation flow induced by underwater supersonic gas jets. Shock Waves, 2010, 20(4): 347.

[25]

Shi HH, Wang BY, Dai ZQ. Research on the mechanics of underwater supersonic gas jets. Sci. China Phys. Mech. Astron., 2010, 53(3): 527.

[26]

Li WC, Meng ZM, Sun ZN, Sun L, Wang C. Investigations on the penetration length of steam-air mixture jets injected horizontally and vertically in quiescent water. Int. J. Heat Mass Transf., 2018, 122, 89.

[27]

Wei JH, Ma JC, Fan YY, Yu NW, Yang SL, Xiang SH, Zhu DP. Water modelling study of fluid flow and mixing characteristics in bath during AOD process. Ironmaking Steelmaking, 1999, 26(5): 363.

[28]

Wei JH, Zhu HL, Chi HB, Wang HJ. Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Fluid mixing characteristics in bath. ISIJ Int., 2010, 50(1): 26.

[29]

Wei JH, Zhu HL, Chi HB, Wang HJ. Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Gas stirring and fluid flow characteristics in bath. ISIJ Int., 2010, 50(1): 17.

[30]

Fabritius T, Kupari P, Härkki J. Physical modelling of a sidewall-blowing converter. Scand. J. Metall., 2001, 30(2): 57.

[31]

Fabritius TMJ, Mure PT, Härkki JJ. The determination of the minimum and operational gas flow rates for sidewall blowing in the AOD-converter. ISIJ Int., 2003, 43(8): 1177.

[32]

Bjurström M, Tilliander A, Iguchi M, Jönsson P. Physical-modeling study of fluid flow and gas penetration in a side-blown AOD converter. ISIJ Int., 2006, 46(4): 523.

[33]

Odenthal HJ, Thiedemann U, Falkenreck U, Schlueter J. Simulation of fluid flow and oscillation of the argon oxygen decarburization (AOD) process. Metall. Mater. Trans. B, 2010, 41(2): 396.

[34]

T. Hass, V.V. Visuri, A. Kärnä, E. Isohookana, P. Sulasalmi, R.H. Eriç, H. Pfeifer, and T. Fabritius, Physical modelling of the effect of slag and top-blowing on mixing in the AOD process, [in] Proc. 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, 2016, p. 999.

[35]

Ternstedt P, Ni PY, Lundqvist N, Tilliander A, Jönsson PG. A physical modelling study to determine the influence of slag on the fluid flow in the AOD converter process. Ironmaking Steelmaking, 2018, 45(10): 944.

[36]

S. Chanouian, B. Ahlin, A. Tilliander, and M. Ersson, Inclination effect on mixing time in a gas-stirred side-blown converter, Steel Res. Int., 92(2021), No. 10, art. No. 2100044.

[37]

Y.G. Xu, M. Ersson, and P.G. Jönsson, Numerical investigations on bubble behavior at a steel-slag interface, Steel Res. Int., 91(2020), No. 6, art. No. 1900611.

[38]

P. Dong, B.J. Lu, S.F. Gong, and D. Cheng, Experimental study of submerged gas jets in liquid cross flow, Exp. Therm. Fluid Sci., 112(2020), art. No. 109998.

[39]

Su CJ, Chou JM, Liu SH. Effect of gas bottom blowing conditions on fluid flow phenomena and mixing time of molten iron inside an ironmaking smelter. Mater. Trans., 2010, 51(9): 1602.

[40]

Conejo AN. Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy, 2021, Singapore, Springer Singapore, 305.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/