Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
Qian Zhou , Tiantian Shi , Bei Xue , Shengyue Gu , Wei Ren , Fang Ye , Xiaomeng Fan , Wenyan Duan , Zihan Zhang , Lifei Du
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1198 -1206.
Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness, lightweight, broadband, and strong absorption. Herein, a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed. The complex permittivity and permeability of each layer are tailored via the proportion of carbonyl-iron and carbon-fiber dispersing into the epoxy resin. The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer. Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss (RL) of less than −6 dB in 2.0–40 GHz, the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than −10 dB in the relevant frequency range. Additionally, the RL of less than −15 dB is achieved in the frequency range of 11.2–21.4 GHz and 28.5–40 GHz. The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results, which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial. Therefore, combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.
broadband absorption / metamaterials / gradient impedance / multi-scale synergic effect
| [1] |
Z. Zhang, H.S. Lei, H.Y. Yang, et al., Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics, Compos. Sci. Technol., 216(2021), art. No. 109064. |
| [2] |
J. Liang, F. Ye, Y.C. Cao, R. Mo, L.F. Cheng, and Q. Song, Defect-engineered graphene/Si3N4 multilayer alternating core—shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 22, art. No. 2200141. |
| [3] |
M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. 2201118. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
M. Yu, P.G. Yang, J. Fu, and S.Z. Liu, Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties, Appl. Phys. Lett., 106(2015), No. 16, art. No. 161904. |
| [12] |
|
| [13] |
|
| [14] |
P.F. Yin, G.L. Wu, Y.T. Tang, et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe,Ni) for broadband microwave absorption, Chem. Eng. J., 446(2022), art. No. 136975. |
| [15] |
|
| [16] |
|
| [17] |
Y. Luo, D. Estevez, F. Scarpa, et al., Microwave properties of metacomposites containing carbon fibres and ferromagnetic microwires, Research, 2019(2019), art. No. 3239879. |
| [18] |
|
| [19] |
|
| [20] |
F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Q. Zhou, X.W. Yin, H.L. Xu, et al., Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band, J. Phys. D: Appl. Phys., 52(2019), No. 43, art. No. 435102. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Y. Gao, X.Y. Gao, J. Li, and S.Y. Guo, Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites, J. Appl. Polym. Sci., 135(2018), No. 12, art. No. 45846. |
| [33] |
J.P. Gogoi and N.S. Bhattacharyya, Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications, J. Appl. Phys., 116(2014), No. 20, art. No. 204101. |
| [34] |
Q.F. Fan, X.Z. Yang, H.S. Lei, Y.Y. Liu, Y.X. Huang, and M.J. Chen, Gradient nanocomposite with metastructure design for broadband radar absorption, Composites Part A, 129(2020), art. No. 105698. |
| [35] |
|
| [36] |
P.T. Xie, Z.D. Zhang, Z.Y. Wang, K. Sun, and R.H. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures, Research, 2019(2019), art. No. 1021368. |
| [37] |
H.Q. Liu, Y.B. Zhang, X.M. Liu, et al., Additive manufacturing of nanocellulose/polyborosilazane derived CNFs—SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption, Chem. Eng. J., 433(2022), art. No. 133743. |
| [38] |
|
| [39] |
F.K. Zhou, R.Y. Tan, W. Fang, et al., An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands, Results Phys., 30(2021), art. No. 104811. |
| [40] |
Q. Zhou, B. Xue, S.Y. Gu, F. Ye, X.M. Fan, and W.Y. Duan, Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials, Results Phys., 38(2022), art. No. 105587. |
| [41] |
|
| [42] |
|
| [43] |
X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, and W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials, Adv. Funct. Mater., 32(2022), No. 5, art. No. 2107508. |
| [44] |
|
| [45] |
W. Li, T.L. Wu, W. Wang, P.C. Zhai, and J.G. Guan, Broadband patterned magnetic microwave absorber, J. Appl. Phys., 116(2014), No. 4, art. No. 044110. |
| [46] |
|
| [47] |
D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 71(2005), No. 3, art. No. 036617. |
| [48] |
|
| [49] |
|
| [50] |
Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335. |
/
| 〈 |
|
〉 |