Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo
Haojun Wu , Min Gong , Renshu Yang , Xiaodong Wu , Xiangyu Liu
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1025 -1037.
Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo
To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment, we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo. The cross-section splits into even and uneven areas. It also considers the uneven burden at the hole’s entrance and bottom. In the uneven area, various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity, combined with the features of the area edges and grid-based segmentation methods. The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms. As a case, this method presents all holes in a 4.8 m wide and 3.6 m high cross-section. Compared with the design produced by the drawing method, our planning in the uneven area improved the standard deviation of the hole burden by 40%. The improved hole layout facilitates the evolution of precise, efficient, and intelligent blasting in underground mines.
drill and blast method / green mine / blast design / drilling jumbo / burden
| [1] |
|
| [2] |
|
| [3] |
G. Ganesan and A.K. Mishra, Assessment of drilling inaccuracy and delineation of constructional and geological overbreak, Tunnelling Underground Space Technol., 108(2021), art. No. 103730. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
L. Lin, Y.C. Lv, H. Guo, et al., Load validity discrimination for telescopic boom of rock drilling jumbo, Autom. Constr., 141(2022), art. No. 104439. |
| [13] |
|
| [14] |
Y.J. Wang, C. Fang, Q.M. Jiang, and S.N. Ahmed, The automatic drilling system of 6R-2P mining drill jumbos, Adv. Mech. Eng., 7(2015), No. 2, art. No. 504861. |
| [15] |
|
| [16] |
|
| [17] |
N.K. Bhagat, A.K. Mishra, R.K. Singh, C. Sawmliana, and P.K. Singh, Application of logistic regression, CART and random forest techniques in prediction of blast-induced slope failure during reconstruction of railway rock-cut slopes, Eng. Fail. Anal., 137(2022), art. No. 106230. |
| [18] |
|
| [19] |
Q. Shen, Y.J. Wang, R.L. Cao, and Y.R. Liu, Efficiency evaluation of a percussive drill rig using rate-energy ratio based on rock drilling tests, J. Pet. Sci. Eng., 217(2022), art. No. 110873. |
| [20] |
|
| [21] |
X.D. Wu, M. Gong, H.J. Wu, and X.Y. Liu, Parameter calculation of the initiating circuit with mixed use of nonel detonators and electronic detonators in tunnel controlled-blasting, Tunnelling Underground Space Technol., 113(2021), art. No. 103975. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
X.X. Tian, Z.P. Song, and J.B. Wang, Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology, Soil Dyn. Earthquake Eng., 126(2019), art. No. 105813. |
| [28] |
|
/
| 〈 |
|
〉 |