Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys

Tongtong Cao , Yong Zhu , Yuyang Gao , Yan Yang , Gang Zhou , Xiaofei Cui , Chen Wen , Bin Jiang , Xiaodong Peng , Fusheng Pan

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 949 -958.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 949 -958. DOI: 10.1007/s12613-022-2572-7
Article

Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys

Author information +
History +
PDF

Abstract

Optimizing the mechanical properties and damping capacity of the duplex-structured Mg-Li-Zn-Mn alloy by tailoring the microstructure via hot extrusion was investigated. The results show that the Mg-8Li-4Zn-1Mn alloy is mainly composed of α-Mg, β-Li, Mg-Li-Zn, and Mn phases. The microstructure of the test alloy is refined owing to dynamic recrystallization (DRX) during hot extrusion. After hot extrusion, the crushed precipitates are uniformly distributed in the test alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of as-extruded alloy reach 156 MPa, 208 MPa, and 32.3%, respectively, which are much better than that of as-cast alloy. Furthermore, the as-extruded and as-cast alloys both exhibit superior damping capacities, with the damping capacity (Q −1) of 0.030 and 0.033 at the strain amplitude of 2 × 10−3, respectively. The mechanical properties of the test alloy can be significantly improved by hot extrusion, whereas the damping capacities have no noticeable change, which indicates that the duplex-structured Mg-Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.

Keywords

magnesium-lithium alloys / hot extrusion / microstructure / mechanical properties / damping capacity

Cite this article

Download citation ▾
Tongtong Cao, Yong Zhu, Yuyang Gao, Yan Yang, Gang Zhou, Xiaofei Cui, Chen Wen, Bin Jiang, Xiaodong Peng, Fusheng Pan. Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(5): 949-958 DOI:10.1007/s12613-022-2572-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Y, Xiong XM, Chen J, Peng XD, Chen DL, Pan FS. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys, 2021, 9(3): 705.

[2]

Hong LX, Wang RX, Zhang XB. Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults. Int. J. Miner. Metall. Mater., 2022, 29(8): 1570.

[3]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1.

[4]

Han J, Wang C, Song YM, Liu ZY, Sun JP, Zhao JY. Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling. Int. J. Miner. Metall. Mater., 2022, 29(8): 1551.

[5]

Jin SY, Ma XC, Wu RZ, et al. Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy. Int. J. Miner. Metall. Mater., 2022, 29(7): 1453.

[6]

Chang TC, Wang JY, Chu CL, Lee S. Mechanical properties and microstructures of various Mg-Li alloys. Mater. Lett., 2006, 60(27): 3272.

[7]

Kim YH, Kim JH, Yu HS, Choi JW, Son HT. Microstructure and mechanical properties of Mg-xLi-3Al-1Sn-0.4Mn alloys (x = 5, 8 and 11wt%). J. Alloys Compd., 2014, 583, 15.

[8]

Wang JF, Xu DD, Lu RP, Pan FS. Damping properties of as-cast Mg-xLi-1Al alloys with different phase composition. Trans. Nonferrous Met. Soc. China, 2014, 24(2): 334.

[9]

R.P. Lu, K. Jiao, N.T. Li, H. Hou, J.F. Wang, and Y.H. Zhao, Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys, J. Magnes. Alloys, (2022). DOI: https://doi.org/10.1016/j.jma.2022.06.013

[10]

Huang XF, Zhang WZ, Wang JF, Wei WW. A transmission electron microscopy investigation of defects in an Mg-Cu-Mn-Zn-Y damping alloy. J. Alloys Compd., 2012, 516, 186.

[11]

Xu C, Zhang JH, Liu SJ, et al. Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults. Mater. Des., 2015, 79, 53.

[12]

Jiang HS, Qiao XG, Zheng MY, Wu K, Xu C, Kamado S. The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg-10Zn-6Y-0.5Zr alloy. Mater. Charact., 2018, 135, 96.

[13]

Jafari H, Tehrani AHM, Heydari M. Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg-5Zn-1.5Y magnesium alloy. Int. J. Miner. Metall. Mater, 2022, 29(3): 490.

[14]

Guan K, Egusa D, Abe E, et al. Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents. J. Magnes. Alloys, 2022, 10(5): 1220.

[15]

Jin ZZ, Zha M, Wang SQ, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloys, 2022, 10(5): 1191.

[16]

Tang YT, Zhang C, Ren LB, et al. Effects of Y content and temperature on the damping capacity of extruded Mg-Y sheets. J. Magnes. Alloys, 2019, 7(3): 522.

[17]

Wang JF, Song PF, Gao S, Huang XF, Shi ZZ, Pan FS. Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg-Zn-Y-Zr alloys. Mater. Sci. Eng. A, 2011, 528(18): 5914.

[18]

Metals, 2020, 10(3) art. No. 301

[19]

Materials, 2020, 13(3) art. No. 583

[20]

C.H. Hou, F.G. Qi, Z.S. Ye, N. Zhao, D.F. Zhang, and X.P. Ouyang, Effects of Mn addition on the microstructure and mechanical properties of Mg-Zn-Sn alloys, Mater. Sci. Eng. A, 774(2020), art. No. 138933.

[21]

R.P. Lu, K. Jiao, Y.H. Zhao, K. Li, K.Y. Yao, and H. Hou, Influence of long-period-stacking ordered structure on the damping capacities and mechanical properties of Mg-Zn-Y-Mn ascast alloys, Materials, 13(2020), No. 20, art. No. 4654.

[22]

Chen SQ, Dong XP, Ma R, Zhang L, Wang H, Fan ZT. Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg-1%Mn based alloy. Mater. Sci. Eng. A, 2012, 551, 87.

[23]

Meng XR, Wu RZ, Zhang ML, Wu LB, Cui CL. Microstructures and properties of superlight Mg-Li-Al-Zn wrought alloys. J. Alloys Compd., 2009, 486(1–2): 722.

[24]

Wang JF, Wu ZS, Gao S, et al. Optimization of mechanical and damping properties of Mg-0.6Zr alloy by different extrusion processing. J. Magnes. Alloys, 2015, 3(1): 79.

[25]

Zhou G, Yang Y, Sun L, et al. Tailoring the microstructure, mechanical properties and damping capacities of Mg-4Li-3Al-0.3Mn alloy via hot extrusion. J. Mater. Res. Technol., 2022, 19, 4197.

[26]

Feng S, Liu WC, Zhao J, Wu GH, Zhang HB, Ding WJ. Effect of extrusion ratio on microstructure and mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy with duplex structure. Mater. Sci. Eng. A, 2017, 692, 9.

[27]

Zhou G, Yang Y, Zhang HZ, et al. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength. J. Mater. Sci. Technol., 2022, 103, 186.

[28]

H. Ji, G.H. Wu, W.C. Liu, X.L. Zhang, L. Zhang, and M.X. Wang, Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys, Acta Mater., 226(2022), art. No. 117673.

[29]

H. Ji, G.H. Wu, W.C. Liu, X.L. Liang, G.L. Liao, and D.H. Ding, Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg-xLi-5Zn-0.5Er (x = 8, 10 and 12 wt%) alloys, Mater. Charact., 159(2020), art. No. 110008.

[30]

Deng HJ, Yang Y, Li MM, et al. Effect of Mn content on the microstructure and mechanical properties of Mg-6Li-4Zn-xMn alloys. Prog. Nat. Sci.: Mater. Int., 2021, 31(4): 583.

[31]

Yamamoto A, Ashida T, Kouta Y, Kim KB, Fukumoto S, Tsubakino H. Precipitation in Mg-(4—13)%Li—(4—5)%Zn ternary alloys. Mater. Trans., 2003, 44(4): 619.

[32]

H. Ji, G.H. Wu, W.C. Liu, J.W. Sun, and W.J. Ding, Role of extrusion temperature on the microstructure evolution and tensile properties of an ultralight Mg-Li-Zn-Er alloy, J. Alloys Compd., 876(2021), art. No. 160181.

[33]

Y.J. Ma, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Microstructure, mechanical properties and damping capacity of asextruded Mg-1.5Gd alloys containing rare-earth textures, Mater. Charact., 189(2022), art. No. 111969.

[34]

Sun HF, Li CJ, Fang WB. Evolution of microstructure and mechanical properties of Mg-3.0Zn-0.2Ca-0.5Y alloy by extrusion at various temperatures. J. Mater. Process. Technol., 2016, 229, 633.

[35]

S.F. Luo, N. Wang, Y. Wang, et al., Texture, microstructure and mechanical properties of an extruded Mg-10Gd-1Zn-0.4Zr alloy: Role of microstructure prior to extrusion, Mater. Sci. Eng. A, 849(2022), art. No. 143476.

[36]

Z.M. Hua, B.Y. Wang, C. Wang, et al., Solute segregation assisted superplasticity in a low-alloyed Mg-Zn-Ca-Sn-Mn alloy, Materialia, 14(2020), art. No. 100918.

[37]

Q.H. Wang, H.W. Zhai, L.T. Liu, et al., Exploiting an as-extruded fine-grained Mg-Bi-Mn alloy with strength-ductility synergy via dilute Zn addition, J. Alloys Compd., 924(2022), art. No. 166337.

[38]

Yuan M, He C, Zhao J, et al. Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion. J. Mater. Res. Technol., 2021, 15, 2518.

[39]

Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater., 2003, 48(8): 1009.

[40]

Qin PF, Yang Q, He YY, et al. Microstructure and mechanical properties of high-strength high-pressure die-cast Mg-4Al-3La-1Ca-0.3Mn alloy. Rare Met., 2021, 40(10): 2956.

[41]

Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414.

[42]

Granato A, Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. J. Appl. Phys., 1956, 27(7): 789.

[43]

Jun JH. Damping behavior of Mg-Zn-Al casting alloys. Mater. Sci. Eng. A, 2016, 665, 86.

[44]

Sugimoto BK, Niiya K, Okamoto T, Kishitake K. A study of damping capacity in magnesium alloys. Trans. JIM, 1977, 18(3): 277.

[45]

X.P. Zhou, H.G. Yan, J.H. Chen, et al., Effects of the β1’ precipitates on mechanical and damping properties of ZK60 magnesium alloy, Mater. Sci. Eng. A, 804(2021), art. No. 140730.

[46]

D. Wang, X.C. Ma, R.Z. Wu, et al., Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg-Y-Er-Zn-Zr alloy, Mater. Sci. Eng. A, 830(2022), art. No. 142298.

[47]

Hu XS, Wu K, Zheng MY, Gan WM, Wang XJ. Low frequency damping capacities and mechanical properties of Mg-Si alloys. Mater. Sci. Eng. A, 2007, 452–453, 374.

[48]

Wan DQ, Wang JC, Wang GF, et al. Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg-3wt.%Ni based alloy. Mater. Sci. Eng. A, 2008, 494(1–2): 139.

[49]

J.H. Wang, Y. Jin, R.Z. Wu, et al., Simultaneous improvement of strength and damping capacities of Mg-8Li-6Y-2Zn alloy by heat treatment and hot rolling, J. Alloys Compd., 927(2022), art. No. 167027.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/