Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption
Yahui Wang , Minghui Zhang , Xuesong Deng , Zhigang Li , Zongsheng Chen , Jiaming Shi , Xijiang Han , Yunchen Du
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 536 -547.
Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption
Reduced graphene oxide (rGO) aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials (EWAMs) due to their intrinsic conductive networks and intricate interior microstructure, as well as good compatibility with other electromagnetic (EM) components. Herein, we realized the decoration of rGO aerogel with Mo2C nanoparticles by sequential hydrothermal assembly, freeze-drying, and high-temperature pyrolysis. Results show that Mo2C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio. The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo2C nanoparticles, and more importantly, these nanoparticles regulate the EM properties of the rGO aerogel to a large extent. Although more Mo2C nanoparticles may decrease the overall attenuation ability of the rGO aerogel, they bring much better impedance matching. At a molar ratio of 1:1, a desirable balance between attenuation ability and impedance matching is observed. In this context, the Mo2C/rGO aerogel displays strong reflection loss and broad response bandwidth, even with a small applied thickness (1.7 mm) and low filler loading (9.0wt%). The positive effects of Mo2C nanoparticles on multifunctional properties may render Mo2C/rGO aerogels promising candidates for high-performance EWAMs under harsh conditions.
Mo2C/reduced graphene oxide aerogel / microwave absorption / dielectric loss / hydrophobicity / thermal insulation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Y. Wang, D.Z. Kong, W.H. Shi, et al., Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries, Adv. Energy Mater., 6(2016), No. 21, art. No. 1601057. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
M.M. Zhang, Z.Y. Jiang, X.Y. Lv, et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability, J. Phys. D: Appl. Phys., 53(2020), No. 2, art. No. 02LT01. |
| [9] |
A. Plyushch, T.L. Zhai, H.S. Xia, et al., Ultra-light reduced graphene oxide based aerogel/foam absorber of microwave radiation, Materials, 12(2019), No. 2, art. No. 213. |
| [10] |
F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
S.S. Wang, Y.C. Xu, R.R. Fu, et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 76. |
| [15] |
Y.X. Li, Y.J. Liao, L.Z. Ji, et al., Quinary high-entropyalloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption, Small, 18(2022), No. 4, art. No. 2107265. |
| [16] |
X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 102. |
| [17] |
|
| [18] |
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano-Micro Lett., 13(2021), No. 1, art. No. 208. |
| [19] |
Y.L. Lian, B.H. Han, D.W. Liu, et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 153. |
| [20] |
C. Wu, Z.F. Chen, M.L. Wang, et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption, Small, 16(2020), No. 30, art. No. 2001686. |
| [21] |
Y. Li, F.B. Meng, Y. Mei, et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption, Chem. Eng. J., 391(2020), art. No. 123512. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, and Y.Z. Wang, Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins, Nano-Micro Lett., 14(2022), No. 1, art. No. 76. |
| [28] |
|
| [29] |
|
| [30] |
Y.H. Wang, X.D. Li, X.J. Han, et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption, Chem. Eng. J., 387(2020), art. No. 124159. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. |
| [38] |
|
| [39] |
X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for highperformance microwave absorption, Chem. Eng. J., 388(2020), art. No. 124317. |
| [40] |
B. Yu, D.X. Yang, Y. Hu, J.R. He, Y.F. Chen, and W.D. He, Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage, Small Methods, 3(2019), No. 2, art. No. 1800287. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
W.J. Zhu F. Ye, M.H. Li, et al., In-situ growth of wafer-like Ti3C2/carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance, Composites Part B, 202(2020), art. No. 108408. |
| [45] |
F.Y. Wang, Y.L. Liu, H.H. Zhao, et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450(2022), art. No. 138160. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
X.S. Deng, Y.H. Wang, L.F. Ma, et al., Construction of dualshell Mo2C/C microsphere towards efficient electromagnetic wave absorption, Int. J. Mol. Sci., 23(2022), No. 23, art. No. 14502. |
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. |
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
M.L. Ma, W.T. Li, Z.Y. Tong, et al., 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption, Mater. Des., 188(2020), art. No. 108462. |
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
H.H. Zhao, X.Z. Xu, Y.H. Wang, et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution, Small, 16(2020), No. 43, art. No. 2003407. |
/
| 〈 |
|
〉 |