Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys

Jian Wu , Heguo Zhu , Zonghan Xie

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 707 -714.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 707 -714. DOI: 10.1007/s12613-022-2567-4
Article

Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys

Author information +
History +
PDF

Abstract

Designing strong, yet ductile, and body-centered cubic (BCC) medium-entropy alloys (MEAs) remains to be a challenge nowadays. In this study, the strength—ductility trade-off of Ni0.6CoFe1.4 MEAs was tackled via introducing a BCC + face-centered cubic (FCC) dual-phase microstructure. Ni0.6CoFe1.4Nb x (x = 0, 0.05, 0.08, 0.10, and 0.15, in molar ratio) MEAs were prepared using vacuum induction melting. Results show that the new alloy is composed of BCC plus FCC dual phases featuring a network-like structure, and the BCC phase is the main phase in this alloy system. Moreover, the Nb0.10 MEA shows high strength and respectable tensile ductility, representing the best combination of the strength and fracture elongation among the alloys studied here. The remarkable strength of the Nb0.10 MEA is attributed to the combined effect of the solid solution strengthening, the precipitation hardening effect and the interface strengthening effect.

Keywords

medium-entropy alloys / alloying / microstructure / mechanical properties / strengthening

Cite this article

Download citation ▾
Jian Wu, Heguo Zhu, Zonghan Xie. Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 707-714 DOI:10.1007/s12613-022-2567-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shojaei Z, Khayati GR, Darezereshki E. Review of electrodeposition methods for the preparation of high-entropy alloys. Int. J. Miner. Metall. Mater., 2022, 29(9): 1683.

[2]

George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat. Rev. Mater., 2019, 4(8): 515.

[3]

Cheng CY, Yang YC, Zhong YZ, Chen YY, Hsu T, Yeh JW. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr. Opin. Solid State Mater. Sci., 2017, 21(6): 299.

[4]

Jiang W, Zhu YT, Zhao YH. Mechanical properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review. Front. Mater, 2022, 8, 792359.

[5]

Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett., 2015, 142, 153.

[6]

Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics, 2010, 18(9): 1758.

[7]

Gorr B, Azim M, Christ HJ, Mueller T, Schliephake D, Heilmaier M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd., 2015, 624, 270.

[8]

He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Mater., 2019, 167, 275.

[9]

W.P. Li, T.H. Chou, T. Yang, et al., Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures, Appl. Mater. Today, 23(2021), art. No. 101037.

[10]

Xiang T, Cai ZY, Du P, Li K, Zhang ZW, Xie GQ. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering. J. Mater. Sci. Technol., 2021, 90, 150.

[11]

K.R. Lim, H.J. Kwon, J.H. Kang, J.W. Won, and Y.S. Na, A novel ultra-high-strength duplex Al-Co-Cr-Fe-Ni high-entropy alloy reinforced with body-centered-cubic ordered-phase particles, Mater. Sci. Eng. A, 771(2020), art. No. 138638.

[12]

Y. Ji, L. Zhang, X. Lu, et al., Microstructural optimization of FexCrNiAl0.5Ti0,5 high entropy alloys toward high ductility, Appl. Phys. Lett., 119(2021), No. 14, art. No. 141903.

[13]

A. Fu, B. Liu, S.H. Xu, et al., Mechanical properties and microstructural evolution of a novel (FeCoNi)86.93Al6.17Ti6.9 medium entropy alloy fabricated via powder metallurgy technique, J. Alloys Compd., 860(2021), art. No. 158460.

[14]

Malatji N, Popoola API, Lengopeng T, Pityana S. Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1332.

[15]

Liang H, Yao HW, Qiao DX, et al. Microstructures and wear resistance of AlCrFeNi2W0.2Nbx high-entropy alloy coatings prepared by laser cladding. J. Therm. Spray Tech., 2019, 28(6): 1318.

[16]

Li R, Ren J, Zhang GJ, et al. Novel (CoFe2NiV0.5Mo0.2)100−xNbx eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties. Acta Metall. Sin. Engl. Lett., 2020, 33(8): 1046.

[17]

Liu WH, He JY, Huang HL, Wang H, Lu ZP, Liu CT. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60, 1.

[18]

Lin DY, Zhang NN, He B, et al. Structural evolution and performance changes in FeCoCrNiAlNbx high-entropy alloy coatings cladded by laser. J. Therm. Spray Technol., 2017, 26(8): 2005.

[19]

Q.Q. Wei, X.D. Xu, G.M. Li, et al., A carbide-reinforced Re0.5MoNbW(TaC)0.8 eutectic high-entropy composite with outstanding compressive properties, Scripta Mater., 200(2021), art. No. 113909.

[20]

Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans., 1970, 1(7): 1987.

[21]

K.X. Zhou, J.J. Li, L.L. Wang, H.O. Yang, Z.J. Wang, and J.C. Wang, Direct laser deposited bulk CoCrFeNiNbx high entropy alloys, Intermetallics, 114(2019), art. No. 106592.

[22]

Li PP, Wang AD, Liu CT. Composition dependence of structure, physical and mechanical properties of FeCoNi (MnAl)x high entropy alloys. Intermetallics, 2017, 87, 21.

[23]

Y.H. Guo, M.Y. Li, P. Li, et al., Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys, J. Alloys Compd., 820(2020), art. No. 153104.

[24]

H. Wu, S.R. Huang, S.M. Zhao, et al., Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles, Intermetallics, 127(2020), art. No. 106983.

[25]

Zhang JF, Jia T, Qiu H, Zhu HG, Xie ZH. Effect of cooling rate upon the microstructure and mechanical properties of in situ TiC reinforced high entropy alloy CoCrFeNi. J. Mater. Sci. Technol., 2020, 42, 122.

[26]

Zhang YC, Yang YR, Zhang JF, Li JW, Zhu HG, Xie ZH. Effect of Ti and B additions on the microstructure and properties of FeCoCrNi high entropy alloys prepared by hot pressing. Powder Metall., 2022, 65(4): 347.

[27]

Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[28]

Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater., 2008, 10(6): 534.

[29]

S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

[30]

Liu WH, Wu Y, He JY, Zhang Y, Liu CT, Lu ZP. The phase competition and stability of high-entropy alloys. JOM, 2014, 66(10): 1973.

[31]

Kuang SH, Zhou F, Liu WC, Liu QB. Al2O3/MC particles reinforced MoFeCrTiWNbx high-entropy-alloy coatings prepared by laser cladding. Surf. Eng., 2022, 38(2): 158.

[32]

B. Chanda and J. Das, Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45≤x≤0.65) high entropy alloys, Adv. Eng. Mater., 20(2018), No. 4, art. No. 1700908.

[33]

Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., 2005, 46(12): 2817.

[34]

Nie QX, Liang H, Qiao DX, Qi ZX, Cao ZQ. Microstructures and mechanical properties of multi-component AlxCrFe2Ni2Mo0.2 high-entropy alloys. Acta Metall. Sin. Engl. Lett., 2020, 33(8): 1135.

[35]

Zhang M, Hou JX, Yang HJ, et al. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1341.

[36]

R. Fan, L.P. Wang, L.L. Zha, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153.

[37]

Dong Y, Gao XX, Lu YP, Wang TM, Li TJ. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater. Lett., 2016, 169, 62.

[38]

Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater. Sci. Eng. A, 2010, 527(26): 6975.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/