First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

Huaxin Qi , Jing Bai , Miao Jin , Jiaxin Xu , Xin Liu , Ziqi Guan , Jianglong Gu , Daoyong Cong , Xiang Zhao , Liang Zuo

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 930 -938.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 930 -938. DOI: 10.1007/s12613-022-2566-5
Article

First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

Author information +
History +
PDF

Abstract

The martensitic transformation, mechanical, and magnetic properties of the Ni2Mn1.5−xCu xTi0.5 (x = 0.125, 0.25, 0.375, 0.5) and Ni2−yCo yMn1.5−xCu xTi0,5 [(x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and (x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni2Mn1.5−xCu xTi0.5 and Ni2−yCo yMn1.5−xCu xTi0.5 (y < 0.625) alloys. When y = 0.625 in the Ni2−yCo yMn1.5−xCu xTi0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.

Keywords

Ni-Mn-Ti-based all-d-metal Heusler alloys / first-principles calculations / mechanical properties / martensitic transformation / magnetic properties

Cite this article

Download citation ▾
Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, Liang Zuo. First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(5): 930-938 DOI:10.1007/s12613-022-2566-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Callisti M, Polcar T. Microstructural evolution of nanometric Ti(NiCu)2 precipitates in annealed Ni-Ti-Cu thin films. Vacuum, 2015, 117, 1.

[2]

Phys. Rev. Lett., 2019, 122(25) art. No. 255703

[3]

J.D. Navarro-García, J.L. Sánchez Llamazares, and J.P.Camarillo-Garcia, Synthesis of highly dense spark plasma sintered magnetocaloric Ni-Mn-Sn alloys from melt-spun ribbons, Mater. Lett., 295(2021), art. No. 129857.

[4]

W.T. Chiu, P. Sratong-on, M. Tahara, V. Chernenko, and H. Hosoda, Large magnetostrains of Ni-Mn-Ga/silicone composite containing system of oriented 5M and 7M martensitic particles, Scripta Mater., 207(2022), art. No. 114265.

[5]

Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater., 2012, 11(7): 620.

[6]

Biesiekierski A, Lin JX, Li YC, Ping DH, Yamabe-Mitarai Y, Wen CE. Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti-Nb-Ru alloys. Acta Biomater., 2017, 48, 461.

[7]

Yang XL, Shang JX. Electronic mechanism of martensitic transformation in Nb-doped NiTi alloys: A first-principles investigation. ACS Omega, 2021, 6(34): 22033.

[8]

Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439(7079): 957.

[9]

Appl. Phys. Lett., 2007, 91(10) art. No. 102507

[10]

Wuttig M, Liu L, Tsuchiya K, James RD. Occurrence of ferromagnetic shape memory alloys (invited). J. Appl. Phys., 2000, 87(9): 4707.

[11]

Monroe JA, Karaman I, Basaran B, et al. Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys. Acta Mater., 2012, 60(20): 6883.

[12]

Phys. Rev. B, 2001, 64(13) art. No. 132412

[13]

Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD. Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb. J. Phys. D: Appl. Phys., 2007, 40(18): 5523.

[14]

G.Y. Zhang, D. Li, C. Liu, et al., Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy, Scripta Mater., 201(2021), art. No. 113947.

[15]

H. Wang, D. Li, G. Zhang, et al., Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong A preferred orientation, Intermetallics, 140(2022), art. No. 107379.

[16]

Huang YJ, Hu QD, Bruno NM, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy. Scripta Mater., 2015, 105, 42.

[17]

Appl. Phys. Lett., 2019, 114(10) art. No. 101903

[18]

H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180.

[19]

Appl. Phys. Lett., 2015, 107(2) art. No. 022406

[20]

Liu K, Ma SC, Ma CC, et al. Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons. J. Alloys Compd., 2019, 790, 78.

[21]

Appl. Phys. Lett., 2021, 119(5) art. No. 051904

[22]

Taubel A, Beckmann B, Pfeuffer L, et al. Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: A combined experimental and theoretical study. Acta Mater., 2020, 201, 425.

[23]

Liang XZ, Bai J, Gu JL, et al. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2−xMn1.5In0.5Co alloys. J. Mater. Sci. Technol., 2020, 44, 31.

[24]

Hafner J. Atomic-scale computational materials science. Acta Mater., 2000, 48(1): 71.

[25]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758.

[26]

Blöchl PE. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953.

[27]

Kern G, Kresse G, Hafner J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B, 1999, 59(13): 8551.

[28]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[29]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[30]

Song Y, Chen X, Dabade V, Shield TW, James RD. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature, 2013, 502(7469): 85.

[31]

Cui J, Chu YS, Famodu OO, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater., 2006, 5(4): 286.

[32]

Wu ZG, Liu ZH, Yang H, Liu Y, Wu G. Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40−xIn10Cox polycrystalline alloys. Intermetallics, 2011, 19(12): 1839.

[33]

Adv. Electron. Mater., 2019, 5(3) art. No. 1800845

[34]

Kaya M, Yildirim S, Yüzüak E, Dincer I, Ellialtioglu R, Elerman Y. The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16. J. Magn. Magn. Mater., 2014, 368, 191.

[35]

Saritaş S, Kaya M, Dinçer Elerman Y. The structural, magnetic, and magnetocaloric properties of Ni43Mn46−xCuxIn11 (x = 0, 0.9, 1.3, and 2.3) Heusler alloys. Metall. Mater. Trans. A, 2017, 48(10): 5068.

[36]

Z. Yang, D.Y. Cong, Y. Yuan, et al., Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis, Appl. Mater. Today, 21(2020), art. No. 100844.

[37]

Guan ZQ, Bai J, Gu JL, et al. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys. J. Mater. Sci. Technol., 2021, 68, 103.

[38]

Xiong CC, Bai J, Li YS, et al. First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni-Mn-Ti alloy. Acta Metall. Sin. Engl. Lett., 2022, 35(7): 1175.

[39]

Guan ZQ, Bai J, Zhang Y, et al. Revealing essence of magnetostructural coupling of Ni-Co-Mn-Ti alloys by first-principles calculations and experimental verification. Rare Met., 2022, 41(6): 1933.

[40]

Muthui Z, Musembi R, Mwabora J, Kashyap A. Perpendicular magnetic anisotropy in nearly fully compensated ferri-magnetic Heusler alloy Mn0.75Co1.25VIn: An ab initio study. J. Magn. Magn. Mater., 2017, 442, 343.

[41]

Prasad RVS, Manivel Raja M, Phanikumar G. Microstructure and magnetic properties of rapidly solidified Ni2(Mn,Fe)Ga Heusler alloys. Adv. Mater. Res., 2009, 74, 215.

[42]

Ni ZN, Guo XM, Liu XT, Jiao YY, Meng FB, Luo HZ. Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5. J. Alloys Compd., 2019, 775, 427.

[43]

J. Bai, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X = Mn, Fe, Co) from first-principles calculations, J. Appl. Phys., 109(2011), No. 1, art. No. 014908.

[44]

Bai J, Wang JL, Shi SF, et al. Complete martensitic transformation sequence and magnetic properties of non-stoi-chiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations. J. Magn. Magn. Mater., 2019, 473, 360.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/