Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material

Chuanchang Li , Weixuan Wang , Xiaoliang Zeng , Chunxuan Liu , Rong Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 772 -781.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 772 -781. DOI: 10.1007/s12613-022-2565-6
Article

Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material

Author information +
History +
PDF

Abstract

Thermal interface materials (TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance (TCR). The TCR between the solid-liquid contact surface is much smaller than that of the solid-solid contact surface, but conventional solid-liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new form-stable phase change thermal interface material. Through the melt blending of paraffin wax (PW) and low-density polyethylene (LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum (Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.

Keywords

paraffin wax / low-density polyethylene / phase change materials / thermal interface materials / form stability

Cite this article

Download citation ▾
Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu, Rong Sun. Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 772-781 DOI:10.1007/s12613-022-2565-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adv. Mater., 2019, 31(19) art. No. 1900199

[2]

Smoyer JL, Norris PM. Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transfer Eng., 2019, 40(3–4): 269.

[3]

Mehra N, Mu LW, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today, 2018, 12, 92.

[4]

M.J. Gibbons, M. Marengo, and T. Persoons, A review of heat pipe technology for foldable electronic devices, Appl. Therm. Eng., 194(2021), art. No. 117087.

[5]

Zheng YT, Wei JJ, Liu JL, et al. Carbon materials: The burgeoning promise in electronics. Int. J. Miner. Metall. Mater., 2022, 29(3): 404.

[6]

Samah KA, Sahar MR, Yusop M, Omar MF. Phase modification and dielectric properties of a cullet-paper ash-Kaolin clay-based ceramic. Int. J. Miner. Metall. Mater., 2018, 25(3): 350.

[7]

Small Methods, 2022, 6(9) art. No. 2200597

[8]

Hansson J, Nilsson TMJ, Ye LL, Liu J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev., 2018, 63(1): 22.

[9]

Zhao YS, Zeng XL, Ren LL, Xia XN, Zeng XL, Zhou J. Heat conduction of electrons and phonons in thermal interface materials. Mater. Chem. Front., 2021, 5(15): 5617.

[10]

Zhu P, Wang PP, Shao PZ, et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites. Int. J. Miner. Metall. Mater., 2022, 29(2): 200.

[11]

Gwinn JP, Webb RL. Performance and testing of thermal interface materials. Microelectron. J., 2003, 34(3): 215.

[12]

Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol., 2015, 10(3): 277.

[13]

Moustafa EB, Taha MA. Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. Int. J. Miner. Metall. Mater., 2021, 28(3): 475.

[14]

Z.Q. Liu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Appl. Therm. Eng., 185(2021), art. No. 116415.

[15]

Zhang DY, Li CC, Lin NZ, Xie BS, Chen J. Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage. Int. J. Miner. Metall. Mater., 2022, 29(1): 168.

[16]

Swamy MCK, Satyanarayan A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications. J. Electron. Mater., 2019, 48(12): 7623.

[17]

Zhou YC, Wu SQ, Long YH, et al. Recent advances in thermal interface materials. ES Mater. Manuf., 2020, 7, 4.

[18]

C.P. Feng, Recent advances in polymer-based thermal interface materials for thermal management: A mini-review, Compos. Commun., 22(2020), art. No. 100528.

[19]

Peng LM, Xu Z, Wang WY, et al. Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management. ACS Appl. Energy Mater., 2021, 4(10): 11173.

[20]

Cao RR. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites. Energy, 2017, 138, 157.

[21]

Xu Y, Li MJ, Zheng ZJ, Xue XD. Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment. Appl. Energy, 2018, 212, 868.

[22]

Lin YX, Zhu CQ, Alva G, Fang GY. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage. Appl. Energy, 2018, 228, 1801.

[23]

J. Yang, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage, Appl. Therm. Eng., 163(2019), art. No. 114412.

[24]

X.N. Fei, S.J. Liu, B.L. Zhang, and H.B. Zhao, Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules, Colloids Surf. A, 608(2021), art. No. 125503.

[25]

Zhang BY, Zhang Z, Kapar S, et al. Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization. ACS Sustainable Chem. Eng., 2019, 7(21): 17756.

[26]

Serrano A. Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl. Therm. Eng., 2016, 103, 226.

[27]

Geng YF, Pan L, Peng ZY, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater., 2022, 51, 733.

[28]

Wang WW, Cai YB, Du MY, et al. Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS Appl. Mater. Interfaces, 2019, 11(35): 31997.

[29]

Wang XC, Li GY, Hong G, Guo Q, Zhang XT. Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices. ACS Appl. Mater. Interfaces, 2017, 9(47): 41323.

[30]

Adv. Sci., 2021, 8(9) art. No. 2001274

[31]

M.M. Rahman, A.O. Oni, E. Gemechu, and A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage., 223(2020), art. No. 113295.

[32]

E. Alehosseini and S.M. Jafari, Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management, Adv. Colloid Interface Sci., 283(2020), art. No. 102226.

[33]

A. Schweighuber, A. Felgel-Farnholz, T. Bögl, J. Fischer, and W. Buchberger, Investigations on the influence of multiple extrusion on the degradation of polyolefins, Polym. Degrad. Stab., 192(2021), art. No. 109689.

[34]

Geiselhart CM, Xue WW, Barner-Kowollik C, Mutlu H. Degradable redox-responsive polyolefins. Macromolecules, 2021, 54(4): 1775.

[35]

P. Awasthi and S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities, Addit. Manuf., 46(2021), art. No. 102177.

[36]

Adv. Mater., 2021, 33(49) art. No. 2106732

[37]

Polymers, 2021, 13(12) art. No. 1987

[38]

Li BX, Liu TX, Hu LY, Wang YF, Gao LN. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustainable Chem. Eng., 2013, 1(3): 374.

[39]

Kim D, Park I, Seo J, Han H, Jang W. Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films. J. Polym. Res., 2015, 22(2): 1.

[40]

Wang Y, Shi H, Xia TD, Zhang T, Feng HX. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated. Mater. Chem. Phys., 2012, 135(1): 181.

[41]

Kwon H, Kim D, Seo J, Han H. Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending. Macromol. Res., 2013, 21(9): 987.

[42]

Arcan I, Yemenicioglu A. Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme. Food Res. Int., 2013, 51(1): 208.

[43]

Bahrami S, Mizani M, Honarvar M, Noghabi MA. Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films. Iran. Polym. J., 2017, 26(11): 885.

[44]

Q.Q. Huang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Appl. Therm. Eng., 183(2021), art. No. 116151.

[45]

Molefi JA, Luyt AS, Krupa I. Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax. Thermochim. Acta, 2010, 500(1–2): 88.

[46]

Luyt AS, Krupa I. Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials. Thermochim. Acta, 2008, 467(1–2): 117.

[47]

C.Q. Liu, Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3, Int. J. Therm. Sci., 152(2020), art. No. 106293.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/