A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis

Qiuyi Wang , Jie Liu , Yadong Li , Zhichao Lou , Yanjun Li

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 446 -473.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 446 -473. DOI: 10.1007/s12613-022-2562-9
Invited Review

A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis

Author information +
History +
PDF

Abstract

Growing electromagnetic pollution has plagued researchers in the field of electromagnetic (EM) energy dissipation for many years; it is increasingly important to solve this problem efficiently. Metal—organic frameworks (MOFs), a shining star of functional materials, have attracted great attention for their advantages, which include highly tunable porosity, structure, and versatility. MOF-derived electromagnetic wave (EMW) absorbers, with advantages such as light weight, thin matching thickness, strong capacity, and wide effective bandwidth, are widely reported. However, current studies lack a systematic summary of the ternary synergistic effects of the precursor component—structure—EMW absorption behavior of MOF derivatives. Here we describe in detail the electromagnetic (EM) energy dissipation mechanism and strategy for preparing MOF-derived EMW absorbers. On the basis of this description, the following means are suggested for adjusting the EM parameters of MOF derivatives, achieving excellent EM energy dissipation: (1) changing the metal and ligands to regulate the chemical composition and morphology of the precursor, (2) controlling pyrolysis parameters (including temperature, heating rate, and gas atmosphere) to manipulate the structure and components of derivatives, and (3) compounding with enhancement phases, including carbon nanomaterials, metals, or other MOFs.

Keywords

metal organic framework / microstructure / magnetic—dielectric synergy / electromagnetic wave absorption

Cite this article

Download citation ▾
Qiuyi Wang, Jie Liu, Yadong Li, Zhichao Lou, Yanjun Li. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(3): 446-473 DOI:10.1007/s12613-022-2562-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Lv, Z. Yang, S.J.H. Ong, et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900163.

[2]

H. Lv, Z. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343.

[3]

Z. Lou, Q. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett., 14(2021), No. 1, art. No. 11.

[4]

B. Yang, J. Fang, C. Xu, et al., One-dimensional magnetic Fe-CoNi alloy toward low-frequency electromagnetic wave absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 170.

[5]

M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, and J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy, Adv. Mater., 32(2020), No. 10, art. No. 1907156.

[6]

K. Li, S. Jin, Y. Zhou, et al., Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity, Composites Part B, 240(2022), art. No. 109987.

[7]

Z. Xiang, Y. Shi, X. Zhu, L. Cai, and W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion, Nano-Micro Lett., 13(2021), No. 1, art. No. 150.

[8]

Z. Ling, J. Zhao, Y. Xie, et al., Facile nanofibrillation of strong bamboo holocellulose via mild acid-assisted DES treatment, Ind. Crops Prod., 187(2022), art. No. 115485.

[9]

P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812.

[10]

X. Li, W. You, C. Xu, et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization, Nano-Micro Lett., 13(2021), No. 1, art. No. 157.

[11]

K. Li, S.C. Jin, S.C. Jiang, et al., Bioinspired mineral-organic strategy for fabricating a high-strength, antibacterial, flame-retardant soy protein bioplastic via internal boron-nitrogen coordination, Chem. Eng. J., 428(2022), art. No. 132616.

[12]

Z. Ling, J. Chen, X.Y. Wang, et al., Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response, Carbohydr. Polym., 296(2022), art. No. 119920.

[13]

Z.L. Zhang, L. Zhang, X.Q. Chen, et al., Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band, J. Magn. Magn. Mater., 497(2020), art. No. 166075.

[14]

Lou ZC, Wang QY, Zhou XD, et al. An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol., 2022, 113, 33.

[15]

X. Li, Y.F. Zhu, X.Q. Liu, B.B. Xu, and Q.Q. Ni, A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites, Compos. Struct., 238(2020), art. No. 111954.

[16]

Liu Q, Cao Q, Bi H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater., 2016, 28(3): 486.

[17]

Liu T, Pang Y, Zhu M, Kobayashi S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale, 2014, 6(4): 2447.

[18]

Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178.

[19]

Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335.

[20]

Deng RX, Chen BB, Li HG, et al. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci., 2019, 488, 921.

[21]

Z.C. Lou, Q.Y. Wang, Y. Zhang, et al., In-situ formation of low-dimensional, magnetic core—shell nanocrystal for electromagnetic dissipation, Composites Part B, 214(2021), art. No. 108744.

[22]

Lou ZC, Yuan TC, Wang QY, et al. Fabrication of crack-free flattened bamboo and its macro-/micro-morphological and mechanical properties. J. Renew. Mater., 2021, 9(5): 959.

[23]

Yang ZJ, Zhang Y, Wen BY. Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos. Sci. Technol., 2019, 178, 41.

[24]

Yan J, Huang Y, Liu XD, et al. Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev., 2021, 61(3): 646.

[25]

C.P. Mu, J.F. Song, B.C. Wang, et al., Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption, Nanotechnology, 29(2018), No. 2, art. No. 025704.

[26]

H.L. Lv, Y. Li, Z.R. Jia, et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption, Composites Part B, 196(2020), art. No. 108122.

[27]

F. Sultanov, C. Daulbayev, B. Bakbolat, and O. Daulbayev, Advances of 3D graphene and its composites in the field of microwave absorption, Adv. Colloid Interface Sci., 285(2020), art. No. 102281.

[28]

Li X, You WB, Wang L, et al. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces, 2019, 11(47): 44536.

[29]

Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J., 2019, 359, 1265.

[30]

H.F. Pang, Y.P. Duan, L.X. Huang, et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Composites Part B, 224(2021), art. No. 109173.

[31]

F. Qin and C. Brosseau, Comment on “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”, Appl. Phys. Lett., 98(2011), art. No. 072906.

[32]

Zhu ZT, Sun X, Xue HR, et al. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C, 2014, 2(32): 6582.

[33]

H.T. Guan, Q.Y. Wang, X.F. Wu, et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Composites Part B, 207(2021), art. No. 108562.

[34]

R.G. Liu, Y.X. Li, C.H. Li, et al., High performance microwave absorption through multi-scale metacomposite by intergrating Ni@C nanocapsules with millimetric polystyrene sphere, J. Phys. D: Appl. Phys., 51(2018), No. 36, art. No. 365303.

[35]

Wang JQ, Li Q, Ren JQ, Zhang AB, Zhang QY, Zhang BL. Synthesis of bowknot-like N-doped Co@C magnetic nanoparticles constituted by acicular structural units for excellent microwave absorption. Carbon, 2021, 181, 28.

[36]

Chen YH, Huang ZH, Lu MM, et al. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A, 2015, 3(24): 12621.

[37]

Y.P. Wang, Z. Peng, Y.C. Jiao, and W. Jiang, Synthesis of Fe3O4@ZnO/RGO nanocomposites and microwave absorption properties, [in] 2015 IEEE 15th International Conference on Nanotechnology, Rome, 2015, p. 220.

[38]

Wang L, Huang Y, Sun X, et al. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale, 2014, 6(6): 3157.

[39]

Z.C. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571.

[40]

S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies, J. Appl. Phys., 97(2005), No. 10, art. No. 10F905.

[41]

Ling Z, Ma JM, Zhang S, Shao LP, Wang C, Ma JF. Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application. Int. J. Biol. Macromol., 2022, 216, 193.

[42]

Zhang Y, Huang Y, Zhang TF, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater., 2015, 27(12): 2049.

[43]

H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24.

[44]

Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705.

[45]

H. Furukawa, K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444.

[46]

Zhou XD, Han H, Wang YC, Lv HL, Lou ZC. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol., 2022, 121, 199.

[47]

Saha D, Deng S. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. J. Colloid Interface Sci., 2010, 348(2): 615.

[48]

Kadioglu O, Keskin S. Efficient separation of helium from methane using MOF membranes. Sep. Purif. Technol., 2018, 191, 192.

[49]

Qiu SL, Xue M, Zhu GS. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev., 2014, 43(16): 6116.

[50]

Hu ZC, Deibert BJ, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 2014, 43(16): 5815.

[51]

Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 2017, 46(11): 3242.

[52]

Millward AR, Yaghi OM. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc., 2005, 127(51): 17998.

[53]

Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469.

[54]

Chae HK, Siberio-Pérez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523.

[55]

Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5): 1450.

[56]

Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040.

[57]

Xie LS, Skorupskii G, Dinca M. Electrically conductive metal-organic frameworks. Chem. Rev., 2020, 120(16): 8536.

[58]

Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res., 2016, 49(3): 483.

[59]

Salunkhe RR, Kaneti YV, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano, 2017, 11(6): 5293.

[60]

F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43.

[61]

Wang HC, Xiang L, Wei W, An J, He J, Gong CH, Hou YL. Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9(48): 42012.

[62]

Zhao HQ, Cheng Y, Lv HL, Zhang BS, Ji GB, Du YW. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustainable Chem. Eng., 2018, 6(11): 15850.

[63]

X.F. Zhang, X.L. Dong, H. Huang, et al., Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89(2006), No. 5, art. No. 053115.

[64]

F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 111(2012), No. 6, art. No. 061301.

[65]

K. Li, S. Jin, X. Li, S.Q. Shi, and J. Li, A green bio-inspired chelating design for improving the electrical conductivity of flexible biopolymer-based composites, J. Clean. Prod., 285(2021), art. No. 125504.

[66]

Ma JR, Wang XX, Cao WQ, et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J., 2018, 339, 487.

[67]

Frenkel J, Doefman J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 1930, 126(3173): 274.

[68]

Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater., 2004, 16(5): 401.

[69]

Lewis TJ. Interfaces: Nanometric dielectrics. J. Phys. D: Appl. Phys., 2005, 38(2): 202.

[70]

Sun Y, Zhou B, Wang HP, et al. Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core—shell FeCo@Fe3O4 nanoparticle for improved microwave absorption. Carbon, 2022, 186, 333.

[71]

M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction, Mater. Sci. Eng. R, 145(2021), art. No. 100627.

[72]

Hilborn RB. Maxwell-Wagner polarization in sintered compacts of ferric oxide. J. Appl. Phys., 1965, 36(5): 1553.

[73]

X.L. Dong, X.F. Zhang, H. Huang, and F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations, Appl. Phys. Lett., 92(2008), No. 1, art. No. 013127.

[74]

Schulten K, Wolynes PG. Semiclassical description of electron spin motion in radicals including the effect of electron hopping. J. Chem. Phys., 1978, 68(7): 3292.

[75]

Wang L, Li X, Shi XF, et al. Recent progress of microwave absorption microspheres by magnetic—dielectric synergy. Nanoscale, 2021, 13(4): 2136.

[76]

X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, and Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules, Appl. Phys. Lett., 92(2008), No. 17, art. No. 173117.

[77]

Y.Z. Jiao, F. Wu, A. Xie, et al., Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption, Chem. Eng. J., 398(2020), art. No. 125591.

[78]

Pan YF, Wang GS, Liu L, Guo L, Yu SH. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res., 2017, 10(1): 284.

[79]

Fang G, Liu C, Yang Y, et al. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces, 2021, 13(31): 37517.

[80]

J.L. Liu, H.S. Liang, and H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance, Compos. A Appl. Sci. Manuf., 130(2020), art. No. 105760.

[81]

Kittel C. On the theory of ferromagnetic resonance absorption. Phys. Rev., 1948, 73(2): 155.

[82]

G.X. Tong, Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao and J.G. Guan, Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings, Appl. Phys. Lett., 108(2016), No. 7, art. No. 072905.

[83]

Y.P. Shi, M.M. Zhang, X.F. Zhang, et al., Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect, J. Appl. Phys., 126(2019), No. 10, art. No. 105109.

[84]

T. Wang, R. Han, G.G. Tan, J.Q. Wei, L. Qiao and F.S. Li, Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite, J. Appl. Phys., 112(2012), No. 10, art. No. 104903.

[85]

Huang Y, Ji JD, Chen Y, et al. Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching. Composites Part B, 2019, 163, 598.

[86]

Qin F, Peng HX. Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci., 2013, 58(2): 183.

[87]

P.A. Yang, Y.X. Huang, R. Li, et al., Optimization of Fe@Ag core—shell nanowires with improved impedance matching and microwave absorption properties, Chem. Eng. J., 430(2022), art. No. 132878.

[88]

Bao S, Tang W, Song ZJ, Jiang QR, Jiang ZY, Xie ZX. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale, 2020, 12(36): 18790.

[89]

Hu QM, Yang RL, Mo ZC, et al. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon, 2019, 153, 737.

[90]

X. Li, L. Yu, W. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393.

[91]

Liu DW, Du YC, Li ZN, et al. Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C, 2018, 6(36): 9615.

[92]

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. Vaibhav Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model, J. Appl. Phys., 115(2014), No. 10, art. No. 104503.

[93]

Wang Y, Di XC, Fu YQ, Wu XM, Cao JT. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci., 2021, 587, 561.

[94]

Ding M, Cai X, Jiang HL. Improving MOF stability: Approaches and applications. Chem. Sci., 2019, 10(44): 10209.

[95]

Zhong M, Kong LJ, Li N, Liu YY, Zhu J, Bu XH. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coord. Chem. Rev., 2019, 388, 172.

[96]

Du YC, Liu T, Yu B, et al. The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys., 2012, 135(2–3): 884.

[97]

P. Ge, H.S. Hou, S.J. Li, L. Yang, and X.B. Ji, Tailoring rodlike FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage, Adv. Funct. Mater., 28(2018), No. 30, art. No. 1801765.

[98]

Yin YC, Liu XF, Wei XJ, Yu RH, Shui JL. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces, 2016, 8(50): 34686.

[99]

Liu W, Shao QW, Ji GB, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J., 2017, 313, 734.

[100]

Han M, Liu Q, He J, Song Y, Xu Z, Zhu JM. Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv. Mater., 2007, 19(8): 1096.

[101]

Zhang Y, Zhang HB, Wu X, Deng Z, Zhou E, Yu ZZ. Nanolayered cobalt@carbon hybrids derived from metal-organic frameworks for microwave absorption. ACS Appl. Nano Mater., 2019, 2(4): 2325.

[102]

YY, Wang YT, Li HL, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces, 2015, 7(24): 13604.

[103]

Liu W, Liu JC, Yang ZH, Ji GB. Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell. ACS Appl. Mater. Interfaces, 2018, 10(34): 28887.

[104]

Liang XH, Wang GH, Gu WH, Ji GB. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon, 2021, 177, 97.

[105]

Zhu TG, Sun Y, Wang YJ, et al. A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties. J Mater Sci: Mater Electron, 2020, 31(9): 6843.

[106]

Xiang Z, Song YM, Xiong J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon, 2019, 142, 20.

[107]

Wan YZ, Xiao J, Li CY, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater., 2016, 399, 252.

[108]

Li XA, Zhang B, Ju CH, Han XJ, Du YC, Xu P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C, 2011, 115(25): 12350.

[109]

Li X, Wang L, You WB, et al. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale, 2019, 11(6): 2694.

[110]

Liu Q, Xu X, Xia W, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale, 2015, 7(5): 1736.

[111]

Y. Liao, G.H. He, and Y.P. Duan, Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation, Chem. Eng. J., 425(2021), art. No. 130512.

[112]

Cheng Y, Zhao Y, Zhao HQ, et al. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J., 2019, 372, 390.

[113]

M.Q. Huang, L. Wang, K. Pei, et al., Multidimension-control-lable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption, Small, 16(2020), No. 14, art. No. 2000158.

[114]

Zhang ZC, Chen YF, He S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed., 2014, 53(46): 12517.

[115]

Wang XJ, Zhang HG, Lin HH, et al. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110.

[116]

P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban, and J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology, Adv. Mater. Interfaces, 7(2020), No. 4, art. No. 1901820.

[117]

Lu WJ, Guo XT, Luo YQ, Li Q, Zhu RM, Pang H. Core-shell materials for advanced batteries. Chem. Eng. J., 2019, 355, 208.

[118]

Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.

[119]

Tang Q, Gao LL, Yu B, Cong HL. Fabrication of core—shell TiO2@SiO2 composites and investigation on its photocatalytic performance of methyl orange from aqueous solution. Integr. Ferroelectr., 2017, 179(1): 159.

[120]

Hou TQ, Wang BB, Jia ZR, et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J Mater Sci: Mater Electron, 2019, 30(12): 10961.

[121]

Huo J, Wang L, Yu HJ. Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci., 2009, 44(15): 3917.

[122]

Liu JW, Xu JJ, Che RC, Chen HJ, Liu MM, Liu ZW. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. A Eur. J., 2013, 19(21): 6746.

[123]

L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang and R.C. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099.

[124]

K. Li, S.C. Jin, F.D. Zhang, et al., Bioinspired phenol-amine chemistry for developing bioadhesives based on biomineralized cellulose nanocrystals, Carbohydr. Polym., 296(2022), art. No. 119892.

[125]

Wang XL, Geng QY, Shi GM, Zhang YJ, Li D. MOF-derived yolk-shell Ni/C architectures assembled with Ni@C core—shell nanoparticles for lightweight microwave absorbents. CrystEngComm, 2020, 22(41): 6796.

[126]

Li D, Liao HY, Kikuchi H, Liu T. Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces, 2017, 9(51): 44704.

[127]

Tao JQ, Zhou JT, Yao ZJ, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon, 2021, 172, 542.

[128]

Meng X, Liu YQ, Han GH, Yang WW, Yu YS. Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption. Carbon, 2020, 162, 356.

[129]

Todd MG, Shi FG. Validation of a novel dielectric constant simulation model and the determination of its physical parameters. Microelectron. J., 2002, 33(8): 627.

[130]

Gao S, Zhang GZ, Wang Y, Han XP, Huang Y, Liu PB. MOFs derived magnetic porous carbon microspheres constructed by core—shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol., 2021, 88, 56.

[131]

Wang KF, Chen YJ, Tian R, et al. Porous Co-C core—shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces, 2018, 10(13): 11333.

[132]

Liu W, Liu L, Yang ZH, Xu JJ, Hou YL, Ji GB. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces., 2018, 10(10): 8965.

[133]

Miao P, Chen J, Tang Y, Chen KJ, Kong J. Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks. Sci. China Mater., 2020, 63(10): 2050.

[134]

J. Su, Z.G. Nie, Y. Feng, et al., Hollow core—shell structure Co/C@MoSe2 composites for high-performance microwave absorption, Composites Part A, 162(2020), art. No. 107140.

[135]

Tong ZY, Liao ZJ, Liu YY, et al. Hierarchical Fe3O4/Fe@C@MoS2 coee-shell nanofibers for efficient microwave absorption. Carbon, 2021, 179, 646.

[136]

Ma ML, Bi Y, Jiao Z, et al. Facile fabrication of metal-organic framework derived Fe/Fe3O4/FeN/N-doped carbon composites coated with PPy for superior microwave absorption. J. Colloid Interface Sci., 2022, 608, 525.

[137]

Liang J, Chen J, Shen H, Hu K, Zhao B, Kong J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater., 2021, 33(5): 1789.

[138]

J.J. Pan, W. Xia, X. Sun, et al., Improvement of interfacial polarization and impedance matching for two-dimensional leaflike bimetallic (Co,Zn) doped porous carbon nanocomposites with broadband microwave absorption, Appl. Surf. Sci., 512(2020), art. No. 144894.

[139]

Yan J, Huang Y, Yan YH, Ding L, Liu PB. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces, 2019, 11(43): 40781.

[140]

Liu PB, Zhang YQ, Yan J, Huang Y, Xia L, Guang ZX. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J., 2019, 368, 285.

[141]

Xiao XY, Zhu WJ, Tan Z, et al. Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Composites Part B, 2018, 152, 316.

[142]

Meng JS, Niu CJ, Xu LH, et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc., 2017, 139(24): 8212.

[143]

Quan B, Liang XH, Yi H, et al. Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C, 2018, 6(43): 11659.

[144]

Yan J, Huang Y, Yan YH, Zhao XX, Liu PB. The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Composites Part A, 2020, 139, 106107.

[145]

H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, and Y. Xie, 1D-3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response, Chem. Eng. J., 417(2021), art. No. 128087.

[146]

Pukdeejorhor L, Adpakpang K, Ponchai P, et al. Polymorphism of mixed metal Cr/Fe terephthalate metal-organic frameworks utilizing a microwave synthetic method. Cryst. Growth Des., 2019, 19(10): 5581.

[147]

Li H, Cao ZM, Lin JY, et al. Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale, 2018, 10(4): 1930.

[148]

Zhao H, Zhu ZH, Xiong C, Zheng XL, Lin QY. The influence of different Ni contents on the radar absorbing properties of FeNi nano powders. RSC Adv., 2016, 6(20): 16413.

[149]

Snoek JL. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/S. Physica, 1948, 14(4): 207.

[150]

Kim D, Ohnishi M, Matsushita N, Abe M. Magnetic cores usable in gigahertz range: Permalloy/Ni-Zn ferrite microcomposite made by low-temperature wet process. IEEE Trans. Magn., 2003, 39(5): 3181.

[151]

X. Liu, L. Wang, G.Y. Zhang, et al., Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery, Chem. Eng. J., 414(2021), art. No. 127569.

[152]

Xu HL, Yin XW, Zhu M, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346.

[153]

L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. 2100970.

[154]

Xiong J, Xiang Z, Zhao J, et al. Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon, 2019, 154, 391.

[155]

T. Bai, D. Wang, J. Yan, et al., Wetting mechanism and inter-facial bonding performance of bamboo fiber reinforced epoxy resin composites, Compos. Sci. Technol., 213(2021), art. No. 108951.

[156]

Wang L, Wen B, Bai X, Liu C, Yang H. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater., 2019, 2(12): 7827.

[157]

L.T. Yan, L. Cao, P.C. Dai, et al., Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting, Adv. Funct. Mater., 27(2017), No. 40, art. No. 1703455.

[158]

Ouyang J, He Z, Zhang Y, Yang H, Zhao Q. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces, 2019, 11(42): 39304.

[159]

Zhou CH, Wu C, Liu D, Yan M. Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. A Eur. J., 2019, 25(9): 2234.

[160]

Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater., 2004, 16(14): 1151.

[161]

Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod., 2021, 6(1): 11.

[162]

Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3): 325.

[163]

Liu C, Wang J, Li JS, et al. Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A, 2017, 5(3): 1211.

[164]

Bechelany M, Drobek M, Vallicari C, Abou Chaaya A, Julbe A, Miele P. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015, 7(13): 5794.

[165]

Gu WH, Lv J, Quan B, Liang XH, Zhang BS, Ji GB. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd., 2019, 806, 983.

[166]

Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624.

[167]

Chen H, Hong R, Liu QC, et al. CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd., 2018, 752, 115.

[168]

Zheng XC, Li YY, Fun X. Design of efficient microwave absorbers based on cobalt-based MOF/SrFe10CoTiO19/carbon nanofibers nanocomposite. J Supercond. Nov. Magn., 2020, 33(9): 2745.

[169]

J.X. Wang, J.F. Yang, J. Yang, and H. Zhang, Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties, Nanotechnology, 31(2020), No. 39, art. No. 394002.

[170]

Zhang WB, Xu XL, Yang JH, et al. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos. Sci. Technol., 2015, 106, 1.

[171]

Chakraborty S, Tiwari CK, Wang Y, Gan-Or G, Gadot E, Weinstock IA. Ligand-regulated uptake of dipolar-aromatic guests by hydrophobically assembled suprasphere hosts. J. Am. Chem. Soc., 2019, 141(36): 14078.

[172]

Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem. Eng. J., 2016, 304, 774.

[173]

Yin YC, Liu XF, Wei XJ, et al. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces, 2017, 9(36): 30850.

[174]

Chen M, Li W, da Silveira Venzel TE, et al. Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films. Mater. Today, 2018, 21(9): 937.

[175]

K. Li, S.Q. Jin, G.D. Zeng, et al., Biomimetic development of a strong, mildew-resistant soy protein adhesive via mineral-organic system and phenol-amine synergy, Ind. Crops Prod., 187(2022), art. No. 115412.

[176]

J. Yan, T. Bai, Y.Y. Yue, et al., Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose, Compos. Sci. Technol, 224(2022), art. No. 109490.

[177]

Wang Y, Zhang WZ, Wu XM, Luo CY, Liang T, Yan G. Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber. J. Magn. Magn. Mater., 2016, 416, 226.

[178]

Zhang K, Xie AM, Sun MX, Jiang WC, Wu F, Dong W. Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys., 2017, 199, 340.

[179]

Mao S, Pu HH, Chen JH. Graphene oxide and its reduction: Modeling and experimental progress. RSC Adv., 2012, 2(7): 2643.

[180]

Kuang B, Song WL, Ning MQ, et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209.

[181]

Qiu HF, Zhu XY, Chen P, et al. Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater., 2020, 49(2): 1204.

[182]

Q.Q. Li, Y.H. Zhao, X.H. Li, et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance, Small, 16(2020), No. 42, art. No. 2003905.

[183]

Y.Q Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096.

[184]

X. Xu, S. Shi, Y. Tang, et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application, Adv. Sci., 8(2021), No. 5, art. No. 2002658.

[185]

Qiang R, Du YC, Zhao HT, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A, 2015, 3(25): 13426.

[186]

Zhu BY, Miao P, Kong J, Zhang XL, Wang GY, Chen KJ. Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption. Cryst. Growth Des., 2019, 19(3): 1518.

[187]

Huang LN, Chen CG, Huang XY, Ruan SC, Zeng YJ. Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Composites Part B, 2019, 164, 583.

[188]

Lv RT, Cao AY, Kang FY, et al. Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization. J. Phys. Chem. C, 2007, 111(30): 11475.

[189]

Ge CQ, Wang LY, Liu G, et al. Electromagnetic and microwave absorption properties of iron pentacarbonyl pyrolysis-synthesized carbonyl iron fibers. RSC Adv., 2020, 10(40): 23702.

[190]

Quan B, Liang XH, Ji GB, et al. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces, 2017, 9(11): 9964.

[191]

Ding JJ, Wang L, Zhao YH, et al. Rutile TiO2 nanoparticles encapsulated in a zeolitic imidazolate framework-derived hierarchical carbon framework with engineered dielectricity as an excellent microwave absorber. ACS Appl. Mater. Interfaces, 2020, 12(42): 48140.

[192]

Tang Q, Zhou Z, Shen PW. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc., 2012, 134(40): 16909.

[193]

Wei LS, Deng W, Li SS, Wu ZG, Cai JH, Luo JW. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod., 2022, 7(1): 63.

[194]

Seh ZW, Fredrickson KD, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett., 2016, 1(3): 589.

[195]

J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, and S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8(2017), art. No. 13907.

[196]

Shahzad F, Zaidi SA, Naqvi RA. 2D transition metal carbides (MXene) for electrochemical sensing: A review. Crit. Rev. Anal. Chem., 2022, 52(4): 848.

[197]

Cai YC, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano, 2018, 12(1): 56.

[198]

Han MK, Yin XW, Li XL, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces, 2017, 9(23): 20038.

[199]

J. Liu, H.B. Zhang, R. Sun, et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding, Adv. Mater., 29(2017), No. 38, art. No. 1702367.

[200]

He P, Wang XX, Cai YZ, et al. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale, 2019, 11(13): 6080.

[201]

Cui GZ, Zheng X, Lv XL, Jia Q, Xie W, Gu GX. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram. Int., 2019, 45(17): 23600.

[202]

Wang HY, Sun XB, Wang GS. A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A, 2021, 9(43): 24571.

[203]

B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, and W. Lu, Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 55.

[204]

J. Liu, H.B. Zhang, X. Xie, et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14(2018), No. 45, art. No. 1802479.

[205]

Y.M. Wang, X. Wang, X.L. Li, et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900326.

[206]

F. Wu, Z.H. Liu, J.Q. Wang, et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties, Chem. Eng. J., 422(2021), art. No. 130591.

[207]

Gu Y, Wu YN, Li L, Chen W, Li F, Kitagawa S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed., 2017, 56(49): 15658.

[208]

Yang J, Zhang FJ, Lu HY, et al. Hollow Zn/Co ZIF particles derived from core—shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. Int. Ed., 2015, 127(37): 11039.

[209]

C. Liu, J. Wang, J.J. Wan, and C.Z. Yu, MOF-on-MOF hybrids: Synthesis and applications, Coord. Chem. Rev., 432(2021), art. No. 213743.

[210]

Zhao MT, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627): 76.

[211]

Guan BY, Yu L, David Lou XW. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci., 2016, 9(10): 3092.

[212]

S.L. Zhang, B.Y. Guan, H.B. Wu, and X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties, Nano-Micro Lett., 10(2018), No. 3, art. No. 44.

[213]

L.L. Chai, J.Q. Pan, Y. Hu, J.J. Qian and M.C. Hong, Rational design and growth of MOF-on-MOF heterostructures, Small, 17(2021), No. 36, art. No. 2100607.

[214]

Liang XH, Quan B, Ji GB, et al. Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front., 2016, 3(12): 1516.

[215]

P.B. Liu, S. Gao, Y. Wang, et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials, Chem. Eng. J., 381(2020), art. No. 122653.

[216]

Wu F, Li Q, Liu ZH, et al. Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties. Carbon, 2021, 182, 484.

[217]

Feng W, Wang YM, Zou YC, Chen JC, Jia DC, Zhou Y. ZnO@ N-doped porous carbon/Co3ZnC core—shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J., 2018, 342, 364.

[218]

Ikigaki K, Okada K, Tokudome Y, et al. MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem. Int. Ed., 2019, 58(21): 6886.

[219]

Lee G, Lee S, Oh S, Kim D, Oh M. Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment. J. Am. Chem. Soc., 2020, 142(6): 3042.

[220]

Yan J, Huang Y, Han XP, Gao XG, Liu PB. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Composites Part B, 2019, 163, 67.

[221]

Chen JB, Zheng J, Wang F, Huang QQ, Ji GB. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon, 2021, 174, 509.

[222]

Xu XQ, Ran FT, Fan ZM, et al. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces, 2020, 12(15): 17870.

[223]

Xiang Z, Xiong J, Deng BW, et al. Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C, 2020, 8(6): 2123.

[224]

Zhang X, Qiao J, Zhao JB, et al. High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces, 2019, 11(39): 35959.

[225]

Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039.

[226]

Wang FY, Wang N, Han XJ, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon, 2019, 145, 701.

[227]

Miao P, Cheng KY, Li HQ, et al. Poly(dimethyl-silylene)diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces, 2019, 11(19): 17706.

[228]

Han XP, Huang Y, Ding L, Song Y, Li TH, Liu PB. Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater., 2021, 4(1): 691.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/