TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction

Fang Xu , Wanning Cao , Jinzhou Li , Songsong Zhi , Zhiyong Gao , Yuqin Jiang , Wei Li , Kai Jiang , Dapeng Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 630 -641.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 630 -641. DOI: 10.1007/s12613-022-2559-4
Article

TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction

Author information +
History +
PDF

Abstract

Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component. Herein, TiO2@NH2-MIL-125(Ti) nanocomposites which possess unsaturated titanium—oxo clusters, mesoporous structure, and intimate interface were successfully constructed via an in-situ distilled water-etched route. The X-ray photoelectron spectroscopy (XPS) measurements indicated strong electronic interaction between TiO2 and NH2-MIL-125(Ti), confirming the formation of TiO2@NH2-MIL-125(Ti) nanocomposite. Photoelectrochemical and thermodynamics measurements showed that TiO2@NH2-MIL-125(Ti) nanocomposites have improved charge separation efficient and decreased transfer resistance of the carriers within the heterojunction interfaces, which facilitates the photoexcited electrons transfer and reduction of the Cr(VI) species. Therefore, the optimal TiO2@NH2-MIL-125(Ti) nanocomposite demonstrated superior performance compared to NH2-MIL-125(Ti) and NH2-MIL-125(Ti) derived TiO2. Based on the free radical trapping experiment and electron paramagnetic resonance (EPR) measurements, a possible type-II scheme was proposed for the enhanced photocatalytic activity over the TiO2@NH2-MIL-125(Ti) nanocomposite.

Keywords

NH2-MIL-125 / titanium dioxide / distilled water-etched route / photocatalysis / hexavalent chromium reduction

Cite this article

Download citation ▾
Fang Xu, Wanning Cao, Jinzhou Li, Songsong Zhi, Zhiyong Gao, Yuqin Jiang, Wei Li, Kai Jiang, Dapeng Wu. TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 630-641 DOI:10.1007/s12613-022-2559-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y.X. Li, H. Fu, P. Wang, C. Zhao, W. Liu, and C.C. Wang, Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation, Environ. Pollut., 256(2020), art. No. 113417.

[2]

Geng J, Gu F, Chang JM. Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(VI) and Rhodamine B from wastewater. J. Hazard. Mater., 2019, 375, 174.

[3]

Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O’Shea K. Chromium(VI) removal by maghemite nanoparticles. Chem. Eng. J., 2013, 222, 527.

[4]

Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater., 2012, 223–224, 1.

[5]

Jamshidifard S, Koushkbaghi S, Hosseini S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hazard. Mater., 2019, 368, 10.

[6]

Wu S, He XB, Wang LJ, Chou KC. High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition. Int. J. Miner. Metall. Mater., 2020, 27(8): 1157.

[7]

Chen F, Yang Q, Wang YL, et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism. Chem. Eng. J., 2018, 348, 157.

[8]

Qiu JH, Zhang XF, Zhang XG, et al. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J. Hazard. Mater., 2018, 349, 234.

[9]

Z.P. Cheng, Q. Dong, S. Chen, et al., Novel AgClxBr1−x solid solutions photocatalyst with enhanced photocatalytic activity for reduction of Cr6+ and oxidation of Bisphenol A under simulated sunlight, Mater. Res. Bull., 139(2021), art. No. 111257.

[10]

Xu F, Chen HM, Xu CY, et al. Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI). J. Colloid Interface Sci., 2018, 525, 97.

[11]

H. Furukawa, K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444.

[12]

Syzgantseva MA, Ireland CP, Ebrahim FM, Smit B, Syzgantseva OA. Metal substitution as the method of modifying electronic structure of metal-organic frameworks. J. Am. Chem. Soc., 2019, 141(15): 6271.

[13]

Zhang T, Lin WB. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16): 5982.

[14]

Nasalevich MA, van der Veen M, Kapteijn F, Gascon J. Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges. CrystEngComm, 2014, 16(23): 4919.

[15]

S. Naghdi, A. Cherevan, A. Giesriegl, et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nat. Commun., 13(2022), art. No. 282.

[16]

Corma A, García H, Xamena FXLI. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev., 2010, 110(8): 4606.

[17]

Xu HQ, Hu JH, Wang DK, et al. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc., 2015, 137(42): 13440.

[18]

Chen XL, Xiao SN, Wang H, et al. MOFs conferred with transient metal centers for enhanced photocatalytic activity. Angew. Chem. Int. Ed., 2020, 59(39): 17182.

[19]

Wang X, Zhang XL, Zhou W, Liu LQ, Ye JH, Wang DF. An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. Nano Energy, 2019, 62, 250.

[20]

J. Wang, A.S. Cherevan, C. Hannecart, et al., Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution, Appl. Catal. B, 283(2021), art. No. 119626.

[21]

Wu SH, Xing XF, Wang D, et al. Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation. ACS Sustainable Chem. Eng., 2020, 8(1): 148.

[22]

Y.X. Li, C.C. Wang, H.F. Fu, and P. Wang, Marigold-flowerlike TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105451.

[23]

L. Li, X.S. Wang, T.F. Liu, and J.H. Ye, Titanium-based MOF materials: From crystal engineering to photocatalysis, Small Methods, 4(2020), No. 12, art. No. 2000486.

[24]

Wen G, Guo ZG. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution. Colloids Surf. A, 2018, 541, 58.

[25]

Hu S, Liu M, Li KY, et al. Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. CrystEgg-Comm, 2014, 16(41): 9645.

[26]

Guo F, Guo JH, Wang P, et al. Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci., 2019, 10(18): 4834.

[27]

Capano G, Ambrosio F, Kampouri S, Stylianou KC, Pasquarello A, Smit B. On the electronic and optical properties of metal-organic frameworks: Case study of MIL-125 and MIL-125-NH2. J. Phys. Chem. C, 2020, 124(7): 4065.

[28]

Cheng XM, Dao XY, Wang SQ, Zhao J, Sun WY. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal., 2021, 11(2): 650.

[29]

Gao S, Cen WL, Li Q, et al. A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks. Appl. Catal. B, 2018, 227, 190.

[30]

Mohammadnezhad F, Kampouri S, Wolff SK, et al. Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces, 2021, 13(4): 5044.

[31]

S. Kampouri, T.N. Nguyen, M. Spodaryk, et al., Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation, Adv. Funct. Mater., 28(2018), No. 52, art. No. 1806368.

[32]

Sun YW, Liu Y, Caro J, Guo XW, Song CS, Liu Y. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angew. Chem. Int. Ed., 2018, 57(49): 16088.

[33]

J.H. Qiu, M. Li, H.T. Wang, and J.F. Yao, Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants, Chemosphere, 242(2020), art. No. 125197.

[34]

V. Muelas-Ramos, C. Belver, J.J. Rodriguez, and J. Bedia, Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation, Sep. Purif. Technol., 272(2021), art. No. 118896.

[35]

Zhou YC, Wang P, Fu HF, Zhao C, Wang CC. Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(VI) cleanup under visible light. Chin. Chem. Lett., 2020, 31(10): 2645.

[36]

S.Y. Zhang, M. Du, Z.P. Xing, Z.Z. Li, K. Pan, and W. Zhou, Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance, Appl. Catal. B, 262(2020), art. No. 118202.

[37]

Wang H, Zhang Q, Li JJ, et al. The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance. J. Colloid Interface Sci., 2022, 606, 1745.

[38]

Chen J, Wang MG, Han J, Guo R. TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis. J. Colloid Interface Sci., 2020, 562, 313.

[39]

Zhang GQ, Yang X, He CX, Zhang PX, Mi HW. Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A, 2020, 8(1): 334.

[40]

Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc., 2009, 131(9): 3152.

[41]

Chen JF, Zhang XD, Bi FK, Zhang XL, Yang Y, Wang YX. A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interface Sci., 2020, 571, 275.

[42]

Liu LF, Zhang FY, Zhang JL, et al. Interfacial assembly and hydrolysis for synthesizing a TiO2/metal-organic framework composite. Soft Matter, 2017, 13(48): 9174.

[43]

Zhang Y, Zhao ZY, Chen JR, et al. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl. Catal. B, 2015, 165, 715.

[44]

Lee H, Jang HS, Kim NY, Joo JB. Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions. J. Ind. Eng. Chem., 2021, 99, 352.

[45]

Liu QQ, Huang JX, Tang H, Yu XH, Shen J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Technol., 2020, 56, 196.

[46]

L.L. Wang, G.G. Tang, S. Liu, et al., Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 428(2022), art. No. 131338.

[47]

Shen J, Wang R, Liu QQ, Yang XF, Tang H, Yang J. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chin. J. Catal., 2019, 40(3): 380.

[48]

Li XY, Pi YH, Hou QQ, et al. Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chem. Commun., 2018, 54(15): 1917.

[49]

Hu JM, Ding J, Zhong Q. In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation. J. Colloid Interface Sci., 2020, 560, 857.

[50]

Zhang BX, Zhang JL, Tan XN, et al. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl. Mater. Interfaces, 2018, 10(19): 16418.

[51]

Bibi R, Huang HL, Kalulu M, et al. Synthesis of aminofunctionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light. ACS Sustainable Chem. Eng., 2019, 7(5): 4868.

[52]

M. Zhang, J.N. Chang, Y.F. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core—shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater., 33(2021), No. 48, art. No. 2105002.

[53]

Sun LM, Yuan YS, Wang F, Zhao YL, Zhan WW, Han XG. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 74, 104909.

[54]

X.M. Cheng, Y.M. Gu, X.Y. Zhang, et al., Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction, Appl. Catal. B, 298(2021), art. No. 120524.

[55]

Nasalevich MA, Goesten MG, Savenije TJ, Kapteijn F, Gascon J. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem. Commun., 2013, 49(90): 10575.

[56]

Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc., 2014, 136(25): 8839.

[57]

Dai DL, Qiu JH, Zhang L, Ma H, Yao JF. Aminofunctionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline. J. Colloid Interface Sci., 2022, 607, 933.

[58]

He ZQ, Tang JT, Shen J, Chen JM, Song S. Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Appl. Surf. Sci., 2016, 364, 416.

[59]

Karthik P, Balaraman E, Neppolian B. Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal-organic framework (MOF) for boosting the effective charge carrier separation. Catal. Sci. Technol., 2018, 8(13): 3286.

[60]

Wang XS, Chen CH, Ichihara F, et al. Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Appl. Catal. B, 2019, 253, 323.

[61]

Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722.

[62]

V. Chevalier, J. Martin, D. Peralta, A. Roussey, and F. Tardif, Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103131.

[63]

Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (γ≤650 nm). J. Am. Chem. Soc., 2002, 124(45): 13547.

[64]

Wu S, Yu HT, Chen S, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal., 2020, 10(24): 14380.

[65]

W.C. Cui, J.P. Shang, H.Y. Bai, et al., In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode, Chem. Eng. J., 388(2020), art. No. 124206.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/