Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties

Dan Mao , Zhen Zhang , Mei Yang , Zumin Wang , Ranbo Yu , Dan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 581 -590.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 581 -590. DOI: 10.1007/s12613-022-2556-7
Article

Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties

Author information +
History +
PDF

Abstract

BaTiO3/TiO2@polypyrrole (PPy) composites with hollow multishelled structure (HoMS) were constructed to enhance the electromagnetic wave absorbing properties of BaTiO3-based absorbing material. BaTiO3/TiO2 HoMSs were prepared by hydrothermal crystallization using TiO2 HoMSs as template. Then, FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer, forming BaTiO3/TiO2@PPy HoMSs successfully. The electromagnetic wave absorbing properties of BaTiO3/TiO2 HoMSs and BaTiO3/TiO2@PPy HoMSs with different shell number were investigated using a vector network analyzer. The results indicate that BaTiO3/TiO2@PPy HoMSs exhibit improved microwave absorption compared with BaTiO3/TiO2 HoMSs. In particular, tripled-shelled BaTiO3/TiO2@PPy HoMS has the most excellent absorbing performance. The best reflection loss can reach up to −21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm, and the qualified absorption bandwidth of tripled-shelled BaTiO3/TiO2@PPy HoMS is up to 4.2 GHz. This work paves a new way for the development of high-performance composite microwave absorbing materials.

Keywords

BaTiO3/TiO2@polypyrrole composites / hollow multishelled structure / electromagnetic wave absorbing

Cite this article

Download citation ▾
Dan Mao, Zhen Zhang, Mei Yang, Zumin Wang, Ranbo Yu, Dan Wang. Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(3): 581-590 DOI:10.1007/s12613-022-2556-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137.

[2]

H. Hu, G.D. Niu, Z.P. Zheng, L. Xu, L.Y. Liu, and J. Tang, Perovskite semiconductors for ionizing radiation detection, EcoMat, 4(2022), No. 6, art. No. e12258.

[3]

Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624.

[4]

Chen XT, Zhou M, Zhao Y, et al. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem., 2022, 24(13): 5280.

[5]

Wang F, Gu WH, Chen JB, et al. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res., 2022, 15(4): 3720.

[6]

Li XP, Deng ZM, Li Y, et al. Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon, 2019, 147, 172.

[7]

Qiu X, Wang LX, Zhu HL, Guan YK, Zhang QT. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 2017, 9(22): 7408.

[8]

Cui LR, Han XJ, Wang FY, Zhao HH, Du YC. A review on recent advances in carbon-based dielectric system for microwave absorption. J. Mater. Sci., 2021, 56(18): 10782.

[9]

Gai LX, Zhao HH, Wang FY, et al. Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res., 2022, 15(10): 9410.

[10]

Cui LR, Tian CH, Tang LL, et al. Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces, 2019, 11(34): 31182.

[11]

Wang L, Li X, Li QQ, Zhao YH, Che RC. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multi-walled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces, 2018, 10(26): 22602.

[12]

Mu ZG, Wei GK, Zhang H, et al. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res., 2022, 15(8): 7731.

[13]

D. Mao, J.W. Wan, J.Y. Wang, and D. Wang, Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures, Adv. Mater., 31(2019), No. 38, art. No. 1802874.

[14]

Y.Z. Wei, N.L. Yang, K.K. Huang, et al., Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport, Adv. Mater., 32(2020), No. 44, art. No. 2002556.

[15]

Zhang Z, Mao D, Yang M, Yu RB. Application of hollow multi-shelled structures in electromagnetic wave field. Chem. J. Chin. Univ., 2021, 42(5): 1395.

[16]

L.J. Yang, H.L. Lv, M. Li, Y. zhang, J.C. Liu, and Z.H. Yang, Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties, Chem. Eng. J., 392(2020), art. No. 123666.

[17]

Liu JW, Cheng J, Che RC, Xu JJ, Liu MM, Liu ZW. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C, 2013, 117(1): 489.

[18]

Tao JQ, Zhou JT, Yao ZJ, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon, 2021, 172, 542.

[19]

Ahmad G, Dickerson MB, Cai Y, et al. Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH. J. Am. Chem. Soc., 2008, 130(1): 4.

[20]

Xia F, Liu JW, Gu D, Zhao PF, Zhang J, Che RC. Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus. Nanoscale, 2011, 3(9): 3860.

[21]

Tian LH, Yan XD, Xu JL, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J. Mater. Chem. A, 2015, 3(23): 12550.

[22]

Zhu YF, Ni QQ, Fu YQ. One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: Synthesis and electromagnetic absorption properties. RSC Adv., 2015, 5(5): 3748.

[23]

Li SP, Huang Y, Zhang N, Zong M, Liu PB. Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J. Alloys Compd., 2019, 774, 532.

[24]

Wu ZC, Tan DG, Tian K, et al. Facile preparation of core-shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties. J. Phys. Chem. C, 2017, 121(29): 15784.

[25]

Pang R, Hu XJ, Zhou SY, et al. Preparation of multi-shelled conductive polymer hollow microspheres by using Fe3O4 hollow spheres as sacrificial templates. Chem. Commun., 2014, 50(83): 12493.

[26]

Ren H, Yu RB, Wang JY, et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett., 2014, 14(11): 6679.

[27]

S. Goel, A. Tyagi, A. Garg, et al., Microwave absorption study of composites based on CQD@BaTiO3 core shell and BaFe12O19 nanoparticles, J. Alloys Compd., 855(2021), art. No. 157411.

[28]

Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J., 2007, 43(6): 2331.

[29]

Zhu YF, Zhang L, Natsuki T, Fu YQ, Ni QQ. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl. Mater. Interfaces, 2012, 4(4): 2101.

[30]

Liu YK, Feng YJ, Wu XW, Han XG. Microwave absorption properties of La doped barium titanate in X-band. J. Alloys Compd., 2009, 472(1–2): 441.

[31]

T.W. Wang, Z.W. Yin, Y.H. Guo, et al., Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal, CCS Chem., (2022). DOI: https://doi.org/10.31635/ccschem.022.202202213

[32]

Zhu YF, Fu YQ, Natsuki T, Ni QQ. Fabrication and microwave absorption properties of BaTiO3 nanotube/polyaniline hybrid nanomaterials. Polym. Compos., 2013, 34(2): 265.

[33]

Liu PB, Gao S, Wang Y, Huang Y, Wang Y, Luo JH. Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces, 2019, 11(28): 25624.

[34]

Zhao B, Zhao WY, Shao G, Fan BB, Zhang R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybbrids. Dalton Trans., 2015, 44(36): 15984.

[35]

Li H, Bao SS, Li YM, et al. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces, 2018, 10(34): 28839.

[36]

Lu MM, Cao WQ, Shi HL, et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A, 2014, 2(27): 10540.

[37]

Yang ZH, Zhang Y, Li M, et al. Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater., 2019, 2(12): 7888.

[38]

Wang SY, Peng SS, Zhong ST, Jiang W. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C, 2018, 6(35): 9465.

[39]

Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.

[40]

Li ZN, Han XJ, Ma Y, et al. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng., 2018, 6(7): 8904.

[41]

Wen GS, Zhao XC, Liu Y, Zhang H, Wang C. Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J., 2019, 372, 1.

[42]

Choi SH, Oh JH, Ko T. Preparation and characteristics of Fe3O4-encapsulated BaTiO3 powder by ultrasound-enhanced ferrite plating. J. Magn. Magn. Mater., 2004, 272–276, 2233.

[43]

Shi GM, Li YF, Ai L, Shi FN. Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites. J. Alloys Compd., 2016, 680, 735.

[44]

Ran J, Guo MJ, Zhong L, Fu HQ. In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: A lightweight electromagnetic absorber. J. Alloys Compd., 2019, 773, 423.

[45]

Huang X, Chen ZR, Tong LF, Feng MN, Pu ZJ, Liu XB. Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure. Mater. Lett., 2013, 111, 24.

[46]

Zuo Y, Luo JH, Cheng ML, Zhang K, Dong RL. Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J. Alloys Compd., 2018, 744, 310.

[47]

Huang Y, Ji JD, Chen Y, et al. Broadband microwave absorption of Fe3O4−BaTiO3 composites enhanced by interfacial polarization and impedance matching. Composites Part B, 2019, 163, 598.

[48]

Peng Z, Jiang W, Wang YP, Zhong ST. Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites. J. Mater. Sci. Mater. Electron., 2016, 27(2): 1304.

[49]

L.J. Yu, Y.F. Zhu, C. Qian, Q. Fu, Y.Z. Zhao, and Y.Q. Fu, Nanostructured barium titanate/carbon nanotubes incorporated polyaniline as synergistic electromagnetic wave absorbers, J. Nanomater., 2016(2016), art. No. 6032307.

[50]

Lv HL, Zhang HQ, Zhao J, Ji GB, Du YW. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res., 2016, 9(6): 1813.

[51]

Wang YH, Han XJ, Xu P, et al. Synthesis of pomegranatelike Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J., 2019, 372, 312.

[52]

W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083.

[53]

Ouyang J, He ZL, Zhang Y, Yang HM, Zhao QH. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces, 2019, 11(42): 39304.

[54]

Qu B, Zhu CL, Li CY, Zhang XT, Chen YJ. Coupling hollow Fe3O4−Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces, 2016, 8(6): 3730.

[55]

Zhao B, Guo XQ, Zhao WY, et al. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res., 2017, 10(1): 331.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/