Prediction of mechanical properties for deep drawing steel by deep learning

Gang Xu , Jinshan He , Zhimin Lü , Min Li , Jinwu Xu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 156 -165.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 156 -165. DOI: 10.1007/s12613-022-2547-8
Article

Prediction of mechanical properties for deep drawing steel by deep learning

Author information +
History +
PDF

Abstract

At present, iron and steel enterprises mainly use “after spot test ward” to control final product quality. However, it is impossible to realize on-line quality predetermining for all products by this traditional approach, hence claims and returns often occur, resulting in major economic losses of enterprises. In order to realize the on-line quality predetermining for steel products during manufacturing process, the prediction models of mechanical properties based on deep learning have been proposed in this work. First, the mechanical properties of deep drawing steels were predicted by using LSTM (long short team memory), GRU (gated recurrent unit) network, and GPR (Gaussian process regression) model, and prediction accuracy and learning efficiency for different models were also discussed. Then, on-line re-learning methods for transfer learning models and model parameters were proposed. The experimental results show that not only the prediction accuracy of optimized transfer learning models has been improved, but also predetermining time was shortened to meet real time requirements of on-line property predetermining. The industrial production data of interstitial-free (IF) steel was used to demonstrate that R 2 value of GRU model in training stage reaches more than 0.99, and R 2 value in testing stage is more than 0.96.

Keywords

machine learning / recurrent natural network / transfer learning / on-line prediction / deep drawing steel / mechanical properties

Cite this article

Download citation ▾
Gang Xu, Jinshan He, Zhimin Lü, Min Li, Jinwu Xu. Prediction of mechanical properties for deep drawing steel by deep learning. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 156-165 DOI:10.1007/s12613-022-2547-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Xie and J.C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett., 120(2018), No. 14, art. No. 145301.

[2]

Ward L, O’Keeffe SC, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater., 2018, 159, 102.

[3]

Shin D, Yamamoto Y, Brady MP, Lee S, Haynes JA. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater., 2019, 168, 321.

[4]

C. Wang, D.Q. Shi, and S.L. Li, A study on establishing a microstructure-related hardness model with precipitate segmentation using deep learning method, Materials (Basel), 13(2020), No. 5, art. No. 1256.

[5]

Rajan K. Materials informatics: The materials “gene” and big data. Annu. Rev. Mater. Res., 2015, 45, 153.

[6]

S. Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data, Butterworth-Heinemann, 2015.

[7]

K. Kim, L. Ward, J.G. He, et al., Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds, Phys. Rev. Mater., 2(2018), No. 12, art. No. 123801.

[8]

Rosenbrock CW, Gubaev K, Shapeev AV, et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Comput. Mater., 2021, 7(1): 1.

[9]

C. Nyshadham, M. Rupp, B. Bekker, et al., Machine-learned multi-system surrogate models for materials prediction, npj Comput. Mater., 5(2019), art. No. 51.

[10]

Y.S. Fan, X.G. Yang, D.Q. Shi, L. Tan, and W.Q. Huang, Quantitative mapping of service process-microstructural degradation-property deterioration for a Ni-based superalloy based on chord length distribution imaging process, Mater. Des., 203(2021), art. No. 109561.

[11]

Yucel B, Yucel S, Ray A, Duprez L, Kalidindi SR. Mining the correlations between optical micrographs and mechanical properties of cold-rolled HSLA steels using machine learning approaches. Integrating Mater. Manuf. Innov., 2020, 9(3): 240.

[12]

Paulson NH, Priddy MW, McDowell DL, Kalidindi SR. Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater., 2017, 129, 428.

[13]

Mangal A, Holm EA. Applied machine learning to predict stress hotspots I: Face centered cubic materials. Int. J. Plast., 2018, 111, 122.

[14]

Mangal A, Holm EA. A comparative study of feature selection methods for stress hotspot classification in materials. Integrating Mater. Manuf. Innov., 2018, 7(3): 87.

[15]

Fernandez-Zelaia P, Roshan Joseph V, Kalidindi SR, Melkote SN. Estimating mechanical properties from spherical indentation using Bayesian approaches. Mater. Des., 2018, 147, 92.

[16]

Solomou A, Zhao G, Boluki S, et al. Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Mater. Des., 2018, 160, 810.

[17]

Rovinelli A, Sangid MD, Proudhon H, et al. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations. J. Mech. Phys. Solids, 2018, 115, 208.

[18]

Tapia G, Khairallah S, Matthews M, King WE, Elwany A. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol., 2018, 94(9–12): 3591.

[19]

Meng LB, Zhang J. Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM, 2020, 72(1): 420.

[20]

DeCost BL, Lei B, Francis T, Holm EA. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel. Microsc. Microanal., 2019, 25(1): 21.

[21]

Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res., 2020, 50(1): 71.

[22]

Thankachan T, Prakash KS, David Pleass C, et al. Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. Int. J. Hydrog. Energy, 2017, 42(47): 28612.

[23]

Feng S, Zhou HY, Dong HB. Using deep neural network with small dataset to predict material defects. Mater. Des., 2019, 162, 300.

[24]

Brun F, Yoshida T, Robson JD, et al. Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models. Mater. Sci. Technol., 1999, 15(5): 547.

[25]

Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nai. Rev. Mater., 2021, 6(8): 730.

[26]

Kondo R, Yamakawa S, Masuoka Y, Tajima S, Asahi R. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater., 2017, 141, 29.

[27]

Cecen A, Dai HJ, Yabansu YC, Kalidindi SR, Song L. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater., 2018, 146, 76.

[28]

A. Nouira, J. Crivello, and N. Sokolovska, CrystalGAN: learning to discover crystallographic structures with generative adversarial networks, 2018, arXiv:1810.11203. DOI: https://doi.org/10.48550/arXiv.1810.11203

[29]

T. Xie and J.C. Grossman, Hierarchical visualization of materials space with graph convolutional neural networks, J. Chem. Phys., 149(2018), No. 17, art. No. 174111.

[30]

Chen C, Ye WK, Zuo YX, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater., 2019, 31(9): 3564.

[31]

Korolev V, Mitrofanov A, Korotcov A, Tkachenko V. Graph convolutional neural networks as “general-purpose” property predictors: The universality and limits of applicability. J. Chem. Inf. Model., 2020, 60(1): 22.

[32]

C.W. Park and C. Wolverton, Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery, Phys. Rev. Mater., 4(2020), No. 6, art. No. 063801.

[33]

B. Ma, X. Wei, C. Liu, et al., Data augmentation in microscopic images for material data mining, npj Comput. Mater., 6(2020), art. No. 125.

[34]

Curtarolo S, Hart GL, Nardelli MB, et al. The high-throughput highway to computational materials design. Nai. Mater., 2013, 12(3): 191.

[35]

Tanaka I, Rajan K, Wolverton C. Data-centric science for materials innovation. MRS Bull., 2018, 43(9): 659.

[36]

Arróyave R, McDowell DL. Systems approaches to materials design: Past, present, and future. Annu. Rev. Mater. Res., 2019, 49, 103.

[37]

Nenchev B, Tao Q, Dong Z, Panwisawas C, Li H, Tao B, Dong H. Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability. Int. J. Miner. Metall. Mater., 2022, 29(4): 836.

[38]

Wu SW, Yang J, Cao GM. Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning. Int. J. Miner. Metall. Mater., 2021, 28(8): 1309.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/