Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review
Shijie Zhang , Jiying Li , Xiaotian Jin , Guanglei Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 428 -445.
Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review
Transition metal dichalcogenides (TMDs) show great advantages in electromagnetic wave (EMW) absorption due to their unique structure and electrical properties. Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years, and the comprehensive and systematical summary is still a rarity. Therefore, it is of great significance to elaborate on the interaction among the morphologies, structures, phases, components, and EMW absorption performances of TMD-based absorbers. This review is devoted to analyzing TMD-based absorbers from the following perspectives: the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers. The absorption mechanisms and component-performance dependency of these achievements are also summarized. Finally, a straightforward insight into industrial revolution upgrading in this promising field is proposed.
transition metal dichalcogenides / phase manipulation / hybrids / hierarchical structure / absorption mechanism
| [1] |
Y.L. Zhang and J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites, Nano-Micro Lett., 14(2022), No. 1, art. No. 89. |
| [2] |
|
| [3] |
|
| [4] |
Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, and J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing, Angew. Chem. Int. Ed., 61(2022), No. 15, art. No. e202200705. |
| [5] |
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. |
| [6] |
Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178. |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Z.C. Lou, Q.Y. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wide-band electromagnetic wave absorbers, Nano-Micro Lett., 14(2021), No. 1, art. No. 11. |
| [11] |
|
| [12] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. |
| [13] |
Z.G. Gao, J.Q. Zhang, S.J. Zhang, J. Wang, and Y.H. Song, Cationic etching of ZIF-67 derived LaCoO3/Co3O4 as high-efficiency electromagnetic absorbents, Chem. Eng. J., 421(2021), art. No. 127829. |
| [14] |
Z.G. Gao, Z.H. Ma, D. Lan, et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2112294. |
| [15] |
Z.H. Zhao, D. Lan, L.M. Zhang, and H.J. Wu, A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns, Adv. Funct. Mater., 32(2022), No. 15, art. No. 2111045. |
| [16] |
S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. |
| [17] |
|
| [18] |
|
| [19] |
S.J. Zhang, Z.G. Gao, Q. Jia, et al., Bioinspired strategy for HMX@hBNNS dual shell energetic composites with enhanced desensitization and improved thermal property, Ach. Mater. Interfaces, 7(2020), No. 22, art. No. 2001054. |
| [20] |
|
| [21] |
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2(2017), art. No. 17033. |
| [22] |
Q. Fu, J.C. Han, X.J. Wang, et al., Electrocatalysts: 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis, Adv. Mater., 33(2021), No. 6, art. No. 2170045. |
| [23] |
Y. Zhou and L.D. Zhao, Promising thermoelectric bulk materials with 2D structures, Adv. Mater., 29(2017), No. 45, art. No. 1702676. |
| [24] |
C.Y. Yan, C.H. Gong, P.H. Wang, et al., 2D group IVB transition metal dichalcogenides, Adv. Funct. Mater., 28(2018), No. 39, art. No. 1803305. |
| [25] |
Z.Z. Zhao, W.H. Liu, Y.W. Jiang, Y.F. Wan, R.H. Du, and H. Li, Solidification of heavy metals in lead smelting slag and development of cementitious materials, J. Clean. Prod., 359(2022), art. No. 132134. |
| [26] |
F. Zhang, Z.R. Jia, J.X. Zhou, J.K. Liu, G.L. Wu, and P.F. Yin, Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption, Chem. Eng. J., 450(2022), art. No. 138205. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Z.M. Wei, B. Li, C.X. Xia, et al., Various structures of 2D transition-metal dichalcogenides and their applications, Small Methods, 2(2018), No. 11, art. No. 1800094. |
| [31] |
|
| [32] |
M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306. |
| [33] |
J. Yan, Y. Huang, X.Y. Zhang, et al., MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber, Nano-Micro Lett., 13(2021), No. 1, art. No. 114. |
| [34] |
M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. 2201118. |
| [35] |
K. Yang, Y.H. Cui, Z.H. Liu, P. Liu, Q.Y. Zhang, and B.L. Zhang, Design of core—shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber, Chem. Eng. J., 426(2021), art. No. 131308. |
| [36] |
M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. e2105553. |
| [37] |
J. Li, D. Zhou, P.J. Wang, et al., Recent progress in two-dimensional materials for microwave absorption applications, Chem. Eng. J., 425(2021), art. No. 131558. |
| [38] |
M.S. Cao, J.C. Shu, X.X. Wang, et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency, Ann. Phys., 531(2019), No. 4, art. No. 1800390. |
| [39] |
|
| [40] |
H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834. |
| [41] |
|
| [42] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. |
| [43] |
T.Q. Hou, Z.R. Jia, B.B. Wang, et al., MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber, Chem. Eng. J., 414(2021), art. No. 128875. |
| [44] |
Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677. |
| [45] |
|
| [46] |
P.F. Yin, G.L. Wu, Y.T. Tang, et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption, Chem. Eng. J., 446(2022), art. No. 136975. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
J. Wang, Z. Jia, X. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett, 13(2021), No. 1, art. No. 175. |
| [61] |
|
| [62] |
Y.Q. Guo, H. Qiu, K.P. Ruan, S.S. Wang, Y.L. Zhang, and J.W. Gu, Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding, Compos. Sci. Technol., 219(2022), art. No. 109253. |
| [63] |
|
| [64] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. |
| [65] |
|
| [66] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960. |
| [72] |
H.X. Zhang, Z.R. Jia, A.L. Feng, et al., In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber, Composites Part B, 199(2020), art. No. 108261. |
| [73] |
|
| [74] |
L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
X. Sun, Y.H. Pu, F. Wu, et al., 0D—1D—2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption, Chem. Eng. J., 423(2021), art. No. 130132. |
| [84] |
W. Ding, L. Hu, Q.C. Liu, et al., Structure modulation induced enhancement of microwave absorption in WS2 nanosheets, Appl. Phys. Lett., 113(2018), No. 24, art. No. 243102. |
| [85] |
M.Q. Ning, P.H. Jiang, W. Ding, et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2011229. |
| [86] |
H.B. Zhang, J.Y. Cheng, H.H. Wang, et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation, Adv. Funct. Mater., 32(2022), No. 6, art. No. 2108194. |
| [87] |
Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, and U. Schwingenschlögl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B, 87(2013), No. 10, art. No. 100401. |
| [88] |
J. Wang, X.Y. Lin, Z.Y. Chu, et al., Magnetic MoS2: A promising microwave absorption material with both dielectric loss and magnetic loss properties, Nanotechnology, 31(2020), No. 13, art. No. 135602. |
| [89] |
L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195. |
| [90] |
Z. Feng, P.P. Yang, G.S. Wen, H.B. Li, Y. Liu, and X.C. Zhao, One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption, Appl. Surf. Sci., 502(2020), art. No. 144129. |
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
L.S. Xing, X. Li, Z.C. Wu, et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption, Chem. Eng. J., 379(2020), art. No. 122241. |
| [95] |
|
| [96] |
J.J. Zhang, Z.H. Li, X.S. Qi, et al., Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber, Composites Part B, 222(2021), art. No. 109067. |
| [97] |
|
| [98] |
|
| [99] |
D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets, Appl. Surf. Sci., 548(2021), art. No. 149158. |
| [100] |
|
| [101] |
J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, and X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption, Chem. Eng. J., 380(2020), art. No. 122625. |
| [102] |
P. Song, B. Liu, C.B. Liang, et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities, Nano-Micro Lett., 13(2021), No. 1, art. No. 91. |
| [103] |
|
| [104] |
|
| [105] |
C.X. Hou, J.Y. Cheng, H.B. Zhang, et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band, Appl. Surf. Sci., 577(2022), art. No. 151939. |
| [106] |
|
| [107] |
|
| [108] |
F. Pan, Z. Liu, B. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett, 13(2021), No. 1, art. No. 43. |
| [109] |
|
| [110] |
D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures, Nano-Micro Lett., 11(2019), No. 1, art. No. 38. |
| [111] |
D.Q. Zhang, H.H. Wang, J.Y. Cheng, et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance, Appl. Surf. Sci., 528(2020), art. No. 147052. |
| [112] |
|
| [113] |
Y.H. Zhu, Q.Q. Wang, Y.H. Han, L. Li, and M.S. Cao, Constructing WSe2@CNTs heterojunction to tune attenuation capability for efficient microwave absorbing and green EMI shielding, Appl. Surf. Sci., 592(2022), art. No. 153253. |
| [114] |
R. Wang, E.Q. Yang, X.S. Qi, et al., Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers, Appl. Surf. Sci., 516(2020), art. No. 146159. |
| [115] |
J. Xu, L.N. Liu, X.C. Zhang, et al., Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor, Chem. Eng. J., 425(2021), art. No. 131700. |
| [116] |
|
| [117] |
X.L. Wang, C.J. Li, H.R. Geng, et al., Tunable dielectric properties and electromagnetic wave absorbing performance of MoS2/Fe3O4/PANI composite, Colloids Surface A, 637(2022), art. No. 128285. |
| [118] |
J.L. Ma, H.D. Ren, Z.Y. Liu, et al., Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance, Compos. Sci. Technol., 198(2020), art. No. 108239. |
| [119] |
Q. Su, B.C. Wang, C.P. Mu, et al., Polypyrrole coated 3D flower MoS2 composites with tunable impedance for excellent microwave absorption performance, J. Alloys Compd., 888(2021), art. No. 161487. |
| [120] |
L.X. Gai, Y.M. Zhao, G.L. Song, et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism, Composites Part A, 136(2020), art. No. 105965. |
| [121] |
|
| [122] |
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, and J.W. Gu, MXenes for polymer matrix electromagnetic interference shielding composites: A review, Compos. Commun., 24(2021), art. No. 100653. |
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li, and R.C. Che, Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance, J. Alloys Compd., 869(2021), art. No. 159365. |
| [128] |
|
| [129] |
J. Yang, J. Wang, H. Li, et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption, Adv. Sci., 9(2022), No. 7, art. No. e2101988. |
| [130] |
J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531. |
| [131] |
|
| [132] |
H.M. Liu, M. Zhang, Y.F. Ye, J.L. Yi, Y.X. Zhang, and Q.C. Liu, Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband microwave absorber, J. Alloys Compd., 892(2022), art. No. 162126. |
| [133] |
M. Wu, X.H. Liang, Y. Zheng, C.Y. Qian, and D.H. Wang, Excellent microwave absorption performances achieved by optimizing core@shell structures of Fe3O4@1T/2H-MoS2 composites, J. Alloys Compd., 910(2022), art. No. 164881. |
| [134] |
|
| [135] |
|
| [136] |
M.Q. Wang, Y. Lin, H.B. Yang, Y. Qiu, and S. Wang, A novel plate-like BaFe12O19@MoS2 core—shell structure composite with excellent microwave absorbing properties, J. Alloys Compd., 817(2020), art. No. 153265. |
| [137] |
|
| [138] |
|
| [139] |
C.L. Li, M.X. Piao, H. Zhang, and X. Wang, Constructing of Co nanosheets decorating with WS2 nanoclusters for enhanced electromagnetic wave absorption, J. Alloys Compd., 912(2022), art. No. 165269. |
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
C.Y. Wang, Y.Y. Ma, Z.H. Qin, J.J. Wang, and B. Zhong, Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance, Appl. Surf. Sci., 569(2021), art. No. 150812. |
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
/
| 〈 |
|
〉 |