An Al-Al interpenetrating-phase composite by 3D printing and hot extrusion

Yulin Lin , Di Wang , Chao Yang , Weiwen Zhang , Zhi Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 678 -688.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 678 -688. DOI: 10.1007/s12613-022-2543-z
Article

An Al-Al interpenetrating-phase composite by 3D printing and hot extrusion

Author information +
History +
PDF

Abstract

We report a process route to fabricate an Al-Al interpenetrating-phase composite by combining the Al-Mg-Mn-Sc-Zr lattice structure and Al84Ni7Gd6Co3 nanostructured structure. The lattice structure was produced by the selective laser melting and subsequently filled with the Al84Ni7Gd6Co3 amorphous powder, and finally the mixture was used for hot extrusion to produce bulk samples. The results show that the composites achieve a high densification and good interface bonding due to the element diffusion and plastic deformation during hot extrusion. The bulk samples show a heterogeneous structure with a combination of honeycomb lattice structure with an average grain size of less than 1 µm and nanostructured area with a high volume fraction of nanometric intermetallics and nanograin α-Al. The heterogeneous structure leads to a bimodal mechanical zone with hard area and soft area giving rise to high strength and acceptable plasticity, where the compressive yield strength and the compressive plasticity can reach ∼745 MPa and ∼30%, respectively. The high strength can be explained by the rule of mixture, the grain boundary strengthening, and the back stress, while the acceptable plasticity is mainly owing to the confinement effect of the nanostructured area retarding the brittle fracture behavior.

Keywords

Al-based composites / heterogeneous structure / additive manufacturing / mechanical properties

Cite this article

Download citation ▾
Yulin Lin, Di Wang, Chao Yang, Weiwen Zhang, Zhi Wang. An Al-Al interpenetrating-phase composite by 3D printing and hot extrusion. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 678-688 DOI:10.1007/s12613-022-2543-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mei Y, Shao PZ, Sun M, et al. Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion. Int. J. Miner. Metall. Mater., 2020, 27(7): 888.

[2]

Kim CS, Cho K, Manjili MH, Nezafati M. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci, 2017, 52(23): 13319.

[3]

Safary E, Taghiabadi R, Ghoncheh MH. Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates. Int. J. Miner. Metall. Mater., 2022, 29(6): 1249.

[4]

Z. Wang, K. Georgarakis, K.S. Nakayama, et al., Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites, Sci. Rep., 6(2016), art. No. 24384.

[5]

Şenel MC, Kanca Y, Gürbüz M. Reciprocating sliding wear properties of sintered Al-B4C composites. Int. J. Miner. Metall. Mater., 2022, 29(6): 1261.

[6]

He C, Zhao N, Shi C, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater., 2007, 19(8): 1128.

[7]

Ma XL, Huang CX, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater., 2016, 116, 43.

[8]

X.C. Liu, Z. Liu, Y.J. Liu, et al., Achieving high strength and toughness by engineering 3D artificial nacre-like structures in Ti6Al4V-Ti metallic composite, Composites Part B, 230(2022), art. No. 109552.

[9]

M.Y. Zhang, Q. Yu, Z.Q. Liu, et al., 3D printed Mg-NiTi inter-penetrating-phase composites with high strength, damping capacity, and energy absorption efficiency, Sci. Adv., 6(2020), No. 19, art. No. eaba5581.

[10]

C.W. Shao, S. Zhao, X.G. Wang, Y.K. Zhu, Z. F.Zhang, and R.O. Ritchie, Architecture of high-strength aluminum—matrix composites processed by a novel microcasting technique, NPG Asia Mater., 11(2019), art. No. 69.

[11]

T. Maconachie, M. Leary, B. Lozanovski, et al., SLM lattice structures: Properties, performance, applications and challenges, Mater. Des., 183(2019), art. No. 108137.

[12]

R.D. Li, H. Chen, H.B. Zhu, M.B. Wang, C. Chen, and T.C. Yuan, Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting, Mater. Des., 168(2019), art. No. 107668.

[13]

Li RD, Wang MB, Li ZM, Cao P, Yuan TC, Zhu HB. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Mater., 2020, 193, 83.

[14]

Z.H. Wang, X. Lin, N. Kang, Y.L. Hu, J. Chen, and W.D. Huang, Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure, Addit. Manuf., 34(2020), art. No. 101260.

[15]

Z. Wang, R.T. Qu, S. Scudino, et al., Hybrid nanostructured aluminum alloy with super-high strength, NPG Asia Mater., 7(2015), No. 12, art. No. e229.

[16]

R.L. Ma, C.Q. Peng, Z.Y. Cai, et al., Manipulating the microstructure and tensile properties of selective laser melted Al-Mg-Sc-Zr alloy through heat treatment, J. Alloys Compd., 831(2020), art. No. 154773.

[17]

J.H. Zhao, L.S. Luo, X. Xue, et al., The evolution and characterizations of Al3(ScxZr1−x) phase in Al-Mg-based alloys proceeded by SLM, Mater. Sci. Eng. A, 824(2021), art. No. 141863.

[18]

Spierings A, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater. Des., 2017, 115, 52.

[19]

Wang Z, Prashanth KG, Scudino S, et al. Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co3 glassy particles. J. Alloys Compd., 2014, 586, S419.

[20]

Wang Z, Prashanth KG, Scudino S, et al. Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders. Intermetallics, 2014, 46, 97.

[21]

Wang Z, Prashanth KG, Surreddi KB, Suryanarayana C, Eckert J, Scudino S. Pressure-assisted sintering of Al-Gd-Ni-Co amorphous alloy powders. Materialia, 2018, 2, 157.

[22]

Pawlowski AE, Cordero ZC, French MR, et al. Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms. Mater. Des., 2017, 127, 346.

[23]

Kolednik O, Predan J, Fischer FD, Fratzl P. Bioinspired design criteria for damage-resistant materials with periodically varying microstructure. Adv. Funct. Mater., 2011, 21(19): 3634.

[24]

Geng YX, Tang H, Xu JH, Zhang ZJ, Xiao YK, Wu Y. Strengthening mechanisms of high-performance Al-Mn-Mg-Sc-Zr alloy fabricated by selective laser melting. Sci. China Mater., 2021, 64(12): 3131.

[25]

R.L. Ma, C.Q. Peng, Z.Y. Cai, et al., Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling, Mater. Sci. Eng. A, 775(2020), art. No. 138975.

[26]

S.Y. Kim, G.Y. Lee, G.H. Park, et al., High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors, Sci. Rep., 8(2018), No. 1, art. No. 1090.

[27]

Shen XJ, Zhang C, Yang YG, Liu L. On the microstructure, mechanical properties and wear resistance of an additively manufactured Ti64/metallic glass composite. Addit. Manuf., 2019, 25, 499.

[28]

Tan Z, Wang L, Xue YF, et al. A multiple grain size distributed Al-based composite consist of amorphous/nanocrystalline, submicron grain and micron grain fabricated through spark plasma sintering. J. Alloys Compd., 2018, 737, 308.

[29]

R.T. Qu and Z.F. Zhang, A universal fracture criterion for high-strength materials, Sci. Rep., 3(2013), art. No. 1117.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/