Preparation and hydration of industrial solid waste—cement blends: A review
Qian Zhang , Bo Liu , Kui Xiao , Christian Ekberg , Shengen Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2106 -2116.
Preparation and hydration of industrial solid waste—cement blends: A review
Industrial solid waste (ISW)—cement blends have the advantages of low carbon, low energy consumption, and low pollution, but their clinker replacement level in low carbon cement is generally low. To address this challenge, this study considers the latest progress and development trends in the ISW—cement blend research, focusing on the activation of ISWs, the formation of ISW—cement blends, and their associated hydration mechanisms. After the mechanical activation of ISWs, the D 50 (average size) typically drops below 10 µm, and the specific surface area increases above 350 m2/kg. Thermal activation can increase the glassy-phase content and reactivity of ISWs, where the coal gangue activation temperature is usually set at 400–1000°C. Furthermore, the roles of ISWs in the hydration of ISW—cement blends are divided into physical and chemical roles. The physical action of ISWs usually acts in the early stage of the hydration of ISW—cement blends. Subsequently, ISWs participate in the hydration reaction of ISW—cement blends to generate products, such as C—(A)—S—H gels. Moreover, alkali activation affects the hydration kinetics of ISW—cement blends and modifies the proportion of gels. Environmental impacts and costs of ISW—cement blends have also been discussed to guide stakeholders in selecting sustainable ISWs.
industrial solid waste—cement blend / activation technology / hydration mechanism / carbon emission reduction
| [1] |
United States Geological Survey, Cement, United States Geological Survey, Reston [2021-11-23]. https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Z. Hussain, N. Chang, J.Q. Sun, et al., Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes, J. Hazard. Mater., 422(2022), art. No. 126778. |
| [9] |
|
| [10] |
|
| [11] |
S.K. Tripathy, J. Dasu, Y.R. Murthy, et al., Utilisation perspective on water quenched and air-cooled blast furnace slags, J. Clean. Prod., 262(2020), art. No. 121354. |
| [12] |
World Steel Association, Global Crude Steel Output Decreases by 0.9% in 2020, World Steel Association, Brussels [2021-11-23]. https://worldsteel.org/media-centre/press-releases/2021/global-crude-steel-output-decreases-by-0-9-in-2020/ |
| [13] |
|
| [14] |
UN Environment, |
| [15] |
|
| [16] |
|
| [17] |
S.Y. Zhuang and Q. Wang, Inhibition mechanisms of steel slag on the early-age hydration of cement, Cem. Concr. Res., 140(2021), art. No. 106283. |
| [18] |
|
| [19] |
|
| [20] |
J.Z. Zhang, Z.Y. Yao, K. Wang, et al., Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review, Constr. Build. Mater., 270(2021), art. No. 121419. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
M. Amran, G. Murali, N.H.A. Khalid, et al., Slag uses in making an ecofriendly and sustainable concrete: A review, Constr. Build. Mater., 272(2021), art. No. 121942. |
| [29] |
|
| [30] |
|
| [31] |
J. de Brito and R. Kurda, The past and future of sustainable concrete: A critical review and new strategies on cement-based materials, J. Clean. Prod., 281(2021), art. No. 123558. |
| [32] |
H. Hafez, D. Kassim, R. Kurda, R.V. Silva, and J. de Brito, Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework, Constr. Build. Mater., 281(2021), art. No. 122559. |
| [33] |
I. Lancellotti, F. Piccolo, K. Traven, et al., Alkali activation of metallurgical slags: Reactivity, chemical behavior, and environmental assessment, Materials (Basel), 14(2021), No. 3, art. No. 639. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
X.W. Gu, W.F. Zhang, X.L. Zhang, X.H. Li, and J.P. Qiu, Hydration characteristics investigation of iron tailings blended ultra high performance concrete: The effects of mechanical activation and iron tailings content, J. Build. Eng., 45(2022), art. No. 103459. |
| [38] |
|
| [39] |
|
| [40] |
J.T. Ma, D.G. Wang, S.B. Zhao, P. Duan, and S.T. Yang, Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste, Materials (Basel), 14(2021), No. 2, art. No. 283. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Y.L. Zhao, J.P. Qiu, Z.Y. Ma, and X.G. Sun, Eco-friendly treatment of coal gangue for its utilization as supplementary cementitious materials, J. Clean. Prod., 285(2021), art. No. 124834. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
P. Prziwara, S. Breitung-Faes, and A. Kwade, Comparative study of the grinding aid effects for dry fine grinding of different materials, Miner. Eng., 144(2019), art. No. 106030. |
| [52] |
|
| [53] |
|
| [54] |
A.G. Wang, P. Liu, L.W. Mo, et al., Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars, J. Build. Eng., 45(2022), art. No. 103616. |
| [55] |
Y.L. Zhang and T.C. Ling, Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review, Constr. Build. Mater., 234(2020), art. No. 117424. |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
M. Nawaz, A. Heitor, and M. Sivakumar, Geopolymers in construction—Recent developments, Constr. Build. Mater., 260(2020), art. No. 120472. |
| [68] |
|
| [69] |
Y.L. Zhao, J.P. Qiu, J. Xing, and X.G. Sun, Chemical activation of binary slag cement with low carbon footprint, J. Clean. Prod., 267(2020), art. No. 121455. |
| [70] |
|
| [71] |
|
| [72] |
S.K. Singh, Jyoti, and P. Vashistha, Development of newer composite cement through mechano-chemical activation of steel slag, Constr. Build. Mater., 268(2021), art. No. 121147. |
| [73] |
|
| [74] |
|
| [75] |
D.B. Jiang, X.G. Li, Y. Lv, et al., Early-age hydration process and autogenous shrinkage evolution of high performance cement pastes, J. Build. Eng., 45(2022), art. No. 103436. |
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
C.Y. Wang, H.T. Peng, L.B. Bian, et al., Performance of alkali-activated cementitious composite mortar used for insulating walls, J. Build. Eng., 44(2021), art. No. 102867. |
| [86] |
|
| [87] |
|
| [88] |
I. Garcia-Lodeiro, S. Donatello, A. Fernández-Jiménez, and Á. Palomo, Hydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model, Materials (Basel), 9(2016), No. 7, art. No. 605. |
| [89] |
A. Palomo, P. Krivenko, I. Garcia-Lodeiro, et al., A review on alkaline activation: New analytical perspectives, Mater. Construcc., 64(2014), No. 315, art. No. e022. |
| [90] |
|
| [91] |
N. Cristelo, I. Garcia-Lodeiro, J.F. Rivera, et al., One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride, J. Build. Eng., 44(2021), art. No. 103298. |
| [92] |
|
| [93] |
|
| [94] |
M.U. Hossain, J.C. Liu, D.X. Xuan, et al., Designing sustainable concrete mixes with potentially alternative binder systems: Multicriteria decision making process, J. Build. Eng., 45(2022), art. No. 103587. |
| [95] |
|
| [96] |
C. Kulasuriya, V. Vimonsatit, and W.P.S. Dias, Performance based energy, ecological and financial costs of a sustainable alternative cement, J. Clean. Prod., 287(2021), art. No. 125035. |
| [97] |
|
/
| 〈 |
|
〉 |