Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel

Haitao Lu , Dazhao Li , Siyuan Li , Yong’an Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 734 -743.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 734 -743. DOI: 10.1007/s12613-022-2531-3
Article

Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel

Author information +
History +
PDF

Abstract

Hot compression tests were performed to investigate the hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150°C and the strain rate range was 0.01–5 s−1 on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol−1. The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100°C and strain rate of 0.01 s−1.

Keywords

Fe-Mn-Al-C steel / hot deformation / activation energy / microstructural evolution / processing map

Cite this article

Download citation ▾
Haitao Lu, Dazhao Li, Siyuan Li, Yong’an Chen. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 734-743 DOI:10.1007/s12613-022-2531-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen SP, Rana R, Haldar A, Ray RK. Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci., 2017, 89, 345.

[2]

Rana R, Lahaye C, Ray RK. Overview of lightweight ferrous materials: Strategies and promises. JOM, 2014, 66(9): 1734.

[3]

Lu K. The future of metals. Science, 2010, 328(5976): 319.

[4]

Wietbrock B, Xiong W, Bambach M, Hirt G. Effect of temperature, strain rate, manganese and carbon content on flow behavior of three ternary Fe-Mn-C (Fe-Mn23-C0.3, Fe-Mn23-C0.6, Fe-Mn28-C0.3) high-manganese steels. Steel Res. Int., 2011, 82(1): 63.

[5]

Yi HL, Sun L, Xiong XC. Challenges in the formability of the next generation of automotive steel sheets. Mater. Sci. Technol., 2018, 34(9): 1112.

[6]

Bleck W. New insights into the properties of high-manganese steel. Int. J. Miner. Metall. Mater., 2021, 28(5): 782.

[7]

de Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater., 2018, 142, 283.

[8]

Li SS, Luo HW. Medium-Mn steels for hot forming application in the automotive industry. Int. J. Miner. Metall. Mater., 2021, 28(5): 741.

[9]

Wang YJ, Zhao S, Song RB, Hu B. Hot ductility behavior of a Fe-0.3C–9Mn-2Al medium Mn steel. Int. J. Miner. Metall. Mater., 2021, 28(3): 422.

[10]

Hu J, Zhang JM, Sun GS, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing. J. Mater. Sci., 2019, 54(8): 6565.

[11]

Hu J, Du LX, Xu W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite. Mater. Charact., 2018, 136, 20.

[12]

Hwang SW, Ji JH, Park KT. Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels. Mater. Sci. Eng. A, 2011, 528(24): 7267.

[13]

Chao CY, Liu CH. Effects of Mn contents on the microstructure and mechanical properties of the Fe-10Al-.xMn-1.0C alloy. Mater. Trans., 2002, 43(10): 2635.

[14]

Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels. JOM, 2014, 66(9): 1845.

[15]

Kalashnikov I, Shalkevich A, Acselrad O, Pereira LC. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system. J. Mater. Eng. Perform., 2000, 9(6): 597.

[16]

Chu CM, Huang H, Kao PW, Gan D. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys. Scripta Metall. Mater., 1994, 30(4): 505.

[17]

Sci. Technol. Adv. Mater., 2013, 14(1) art. No. 014205

[18]

Hamada AS, Karjalainen LP, Somani MC, Ramadan RM. Deformation mechanisms in high-Al bearing high-Mn TWIP steels in hot compression and in tension at low temperatures. Mater. Sci. Forum, 2007, 550, 217.

[19]

Rana R, Liu C, Ray RK. Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application. Acta Mater., 2014, 75, 227.

[20]

Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater., 2017, 122, 332.

[21]

Y.H. Mozumder, K. Babu, R. Saha, and S. Mandal, Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate, Mater. Sci. Eng. A, 823(2021), art. No. 141725.

[22]

Honeycombe RWK, Pethen RW. Dynamic recrystallization. J. Less Common Met., 1972, 28(2): 201.

[23]

Sakai TK, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci., 2014, 60, 130.

[24]

Abedi HR, Hanzaki AZ, Liu Z, Xin R, Haghdadi N, Hodgson PD. Continuous dynamic recrystallization in low density steel. Mater. Des., 2017, 114, 55.

[25]

Xu LX, Wu HB, Wang XT. Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel. Acta Metall. Sinica Engl. Lett., 2018, 31(4): 389.

[26]

D.G. Liu, H. Ding, X. Hu, D. Han, and M.H. Cai, Dynamic re-crystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel, Mater. Sci. Eng. A, 772(2020), art. No. 138682.

[27]

D.T. Pierce, D.M. Field, K.R. Limmer, T. Muth, and K.M. Sebeck, Hot deformation behavior of an industrially cast large grained low density austenitic steel, Mater. Sci. Eng. A, 825(2021), art. No. 141785.

[28]

Sun J, Li JH, Wang P, Huang ZY. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel. Trans. Indian Inst. Met., 2022, 75(3): 699.

[29]

Duprez L, De Cooman BC, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation. Metall. Mater. Trans. A, 2002, 33(7): 1931.

[30]

Montheillet F. Fischer FD. Moving grain boundaries during hot deformation of metals: Dynamic recrystallization. Moving Interfaces in Crystalline Solids, 2004, Vienna, Springer, 203 Vol. 453

[31]

Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J. Appl. Phys., 1944, 15(1): 22.

[32]

Int. J. Miner. Metall. Mater., 2023, 30(2)

[33]

Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall., 1966, 14(9): 1136.

[34]

Li YP, Song RB, Wen ED, Yang FQ. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel. Acta Metall. Sinica Engl. Lett., 2016, 29(5): 441.

[35]

Zambrano OA, Valdés J, Aguilar Y, Coronado JJ, Rodríguez SA, Logé RE. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation. Mater. Sci. Eng. A, 2017, 689, 269.

[36]

Khosravifard A, Hamada AS, Moshksar MM, Ebrahimi R, Porter DA, Karjalainen LP. High temperature deformation behavior of two as-cast high-manganese TWIP steels. Mater. Sci. Eng. A, 2013, 582, 15.

[37]

Hamada AS, Karjalainen LP, Somani MC. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Mater. Sci. Eng. A, 2007, 467(1–2): 114.

[38]

Wu ZQ, Tang YB, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map. Vacuum, 2019, 159, 447.

[39]

Mirzadeh H, Cabrera JM, Prado JM, Najafizadeh A. Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng. A, 2011, 528(10–11): 3876.

[40]

Poliak EI, Jonas JJ. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater., 1996, 44(1): 127.

[41]

Materials, 2021, 14(10) art. No. 2478

[42]

Mandal S, Jayalakshmi M, Bhaduri AK, Sarma VS. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N). Metall. Mater. Trans. A, 2014, 45(12): 5645.

[43]

Jonas JJ, Quelennec X, Jiang L, Martin É. The Avrami kinetics of dynamic recrystallization. Acta Mater., 2009, 57(9): 2748.

[44]

Huang ZY, Jiang YS, Hou AL, et al. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels. J. Mater. Sci. Technol., 2017, 33(12): 1531.

[45]

Shaban M, Eghbali B. Determination of critical conditions for dynamic recrystallization of a microalloyed steel. Mater. Sci. Eng. A, 2010, 527(16–17): 4320.

[46]

Prasad YVRK, Gegel HL, Doraivelu SM, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A, 1984, 15(10): 1883.

[47]

Prasad YVRK. Processing maps: A status report. J. Mater. Eng. Perform., 2003, 12(6): 638.

[48]

Wan P, Yu HX, Li F, Gao PF, Zhang L, Zhao ZZ. Hot deformation behaviors and process parameters optimization of low-density high-strength Fe-Mn-Al-C alloy steel. Met. Mater. Int., 2022, 28(10): 2498.

[49]

Ghazani MS, Eghbali B. Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel. Int. J. Miner. Metall. Mater., 2021, 28(11): 1799.

[50]

Ziegler H. Some extremum principles in irreversible thermodynamics, with application to continuum mechanics. Prog. Solid Mech., 1963, 4, 93

[51]

Momeni A, Dehghani K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater. Sci. Eng. A, 2011, 528(3): 1448.

[52]

Davinci MA, Samantaray D, Borah U, Albert SK, Bhaduri AK. Influence of processing parameters on hot workability and microstructural evolution in a carbon-manganese-silicon steel. Mater. Des., 2015, 88, 567.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/