Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl

Shanshan Liu , Shaolong Li , Chenhui Liu , Jilin He , Jianxun Song

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 868 -876.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (5) : 868 -876. DOI: 10.1007/s12613-022-2527-z
Article

Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl

Author information +
History +
PDF

Abstract

The effects of fluoride ions (F) on the electrochemical behavior and coordination properties of titanium ions (Ti n+) were studied in this work, by combining electrochemical and mathematical analysis as well as spectral techniques. The α was taken as a factor to indicate the molar concentration ratio of F and Ti n+. Cyclic voltammetry (CV), square wave voltammetry (SWV), and open circuit potential method (OCP) were used to study the electrochemical behavior of titanium ions under conditions of various α, and in-situ sampler was used to prepare molten salt samples when α equal to 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 8.0. And then, samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results showed that F in molten salt can reduce the reduction steps of titanium ions and greatly affects the proportion of valence titanium ions which making the high-valence titanium content increased and more stable. Ti2+ cannot be detected in the molten salt when α is higher than 3.0 and finally transferred to titanium ions with higher valence state. Investigation revealed that the mechanism behind those phenomenon is the coordination compounds (TiCl jF i m) forming.

Keywords

molten salt / sodium chloride—potassium chloride / ratio of fluoride and titanium ions / coordination mechanism

Cite this article

Download citation ▾
Shanshan Liu, Shaolong Li, Chenhui Liu, Jilin He, Jianxun Song. Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(5): 868-876 DOI:10.1007/s12613-022-2527-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dehghan-Manshadi A, Bermingham MJ, Dargusch MS, StJohn DH, Qian M. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol., 2017, 319, 289.

[2]

Ahmadi E, Suzuki RO, Kikuchi T, Kaneko T, Yashima Y. Towards a sustainable technology for production of extrapure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2. Int. J. Miner. Metall. Mater., 2020, 27(12): 1635.

[3]

Yuan TC, Weng QG, Zhou ZH, Li J, He YH. Preparation of high-purity titanium by molten-salt electrolysis process. Adv. Mater. Res., 2011, 284–286, 1477.

[4]

Chen M, Wang XQ, Zhang EL, Wan YZ, Hu J. Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification. Rare Met., 2022, 41(2): 689.

[5]

Tsao LC. Effects of different electrolytes on microstructure and antibacterial properties of microarc oxidized coatings of CP-Ti. Int. J. Mater. Mech. Manuf., 2020, 8(2): 34

[6]

Ebrahimi A, Esfahani H, Imantalab O, Fattah-Alhosseini A. Biological, antibacterial activities and electrochemical behavior of borided commercially pure titanium in BSA-containing PBS. Trans. Nonferrous Met. Soc. China, 2020, 30(4): 944.

[7]

Song JX, Huang XX, Wu JY, Zhang X. Electrochemical behaviors of Ti(III) in molten NaCl—KCl under various contents of fluoride. Electrochim. Acta, 2017, 256, 252.

[8]

Haarberg GM, Rolland W, Sterten Å, Thonstad J. Electrodeposition of titanium from chloride melts. J. Appl. Electrochem., 1993, 23(3): 217.

[9]

Cai YF, Song NN, Yang YF, Sun LM, Hu P, Wang JS. Recent progress of efficient utilization of titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater., 2022, 29(1): 22.

[10]

Wang QY, Li Y, Jiao SQ, Zhu HM. Producing metallic titanium through electro-refining of titanium nitride anode. Electrochem. Commun., 2013, 35, 135.

[11]

Jiao SQ, Jiao HD, Song WL, Wang MY, Tu JG. A review on liquid metals as cathodes for molten salt/oxide electrolysis. Int. J. Miner. Metall. Mater., 2020, 27(12): 1588.

[12]

Girginov A, Tzvetkoff TZ, Bojinov M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. J. Appl. Electrochem., 1995, 25(11): 993.

[13]

Wendt H, Reuhl K, Schwarz V. Cathodic deposition of refractory intermetallic compounds from flinak-melts—I. Voltammetric investigation of Ti, Zr, B, TiB2 and ZrB2. Electrochim. Acta, 1992, 37(2): 237.

[14]

Song JX, Wang QY, Kang MH, Jiao SQ, Zhu HM. The equilibrium between titanium ions and metallic titanium in the molten binary mixtures of LiCl. Electrochim. Acta., 2014, 82(12): 1047

[15]

Song JX, Wang QY, Wu JY, Jiao SQ, Zhu HM. The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discuss., 2016, 190, 421.

[16]

Stafford GR, Moffat TP. Electrochemistry of titanium in molten 2AlCl3-NaCl. J. Electrochem. Soc., 1995, 142(10): 3288.

[17]

Chassaing E, Basile F, Lorthioir G. Study of Ti(III) solutions in various molten alkali chlorides. I. Chemical and electrochemical investigation. J. Appl. Electrochem., 1981, 11(2): 187.

[18]

Kang MH, Song JX, Zhu HM, Jiao SQ. Electrochemical behavior of titanium(II) ion in a purified calcium chloride melt. Metall. Mater. Trans. B, 2015, 46(1): 162.

[19]

Song Y, Jiao SQ, Hu LW, Guo ZC. The cathodic behavior of Ti(III) ion in a NaCl-2CsCl melt. Metall. Mater. Trans. B, 2016, 47(1): 804.

[20]

Uda T, Okabe TH, Waseda Y, Awakura Y. Electroplating of titanium on iron by galvanic contact deposition in NaCl-TiCl2 molten salt. Sci. Technol. Adv. Mater., 2006, 7(6): 490.

[21]

Song JX, Wang QY, Hu GJ, Zhu XB, Jiao SQ, Zhu HM. Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt. Int. J. Miner. Metall. Mater., 2014, 21(7): 660.

[22]

Song JX, Mukherjee A. Influence of F on the electrochemical properties of titanium ions and Al-Ti alloy electrode-position in molten AlCl3-NaCl. RSC Adv., 2016, 6(85): 82049.

[23]

Chen GS, Okido M, Oki T. Electrochemical studies of titanium in fluoride—chloride molten salts. J. Appl. Electrochem., 1988, 18(1): 80.

[24]

Ene N, Zuca S. Role of free F anions in the electrorefining of titanium in molten alkali halide mixtures. J. Appl. Electrochem., 1995, 25(7): 671.

[25]

Popov BN, Kimble MC, White RE, Wendt H. Electrochemical behaviour of titanium(II) and titanium(III) compounds in molten lithium chloride/potassium chloride eutectic melts. J. Appl. Electrochem., 1991, 21(4): 351.

[26]

Bright FH, Wurm JG. Some new fluoride complexes of trivalent titanium. Can. J. Chem., 1958, 36(4): 615.

[27]

Lantelme F, Salmi A. Electrochemistry of titanium in NaCl-KCl mixtures and influence of dissolved fluoride ions. J. Electrochem. Soc., 1995, 142(10): 3451.

[28]

Polyakova LP, Taxil P, Polyakov EG. Electrochemical behaviour and codeposition of titanium and niobium in chloride—fluoride melts. J. Alloys Compd., 2003, 359(1–2): 244.

[29]

Robin A, de Lepinay J. Determination of the apparent standard potential of the Ti/Ti(III) system in the LiF-NaF-KF eutectic using voltammetry, chronopotentiometry and open-circuit potentiometry. Electrochim. Acta, 1991, 36(5–6): 1009.

[30]

Song JX, Wang QY, Zhu XB, Hou J, Jiao S, Zhu HM. The influence of fluoride anion on the equilibrium between titanium ions and electrodeposition of titanium in molten fluoride—chloride salt. Mater. Trans., 2014, 55(8): 1299.

[31]

Wang QY, Song JX, Hu GJ, et al. The equilibrium between titanium ions and titanium metal in NaCl-KCl equimolar molten salt. Metall. Mater. Trans. B, 2013, 44(4): 906.

[32]

Liu ZT, Lu GM, Yu JG. Electrochemical behavior of magnesium ions in chloride melt. Ionics, 2019, 25(6): 2719.

[33]

Liang JL, Li H, Huo DX, et al. Electrochemical characteristics of TiO2 in NaCl-KCl-NaF molten salt system. Ionics, 2018, 24(10): 3221.

[34]

Delpech S, Jaskierowicz S, Rodrigues D. Electrochemistry of thorium fluoride in LiCl-KCl eutectic melts and methodology for speciation studies with fluorides ions. Electrochim. Acta, 2014, 144, 383.

[35]

Lambertin D, Lacquement J, Sanchez S, Picard GS. Dismutation of divalent americium induced by the addition of fluoride anion to a LiCl-KCl eutectic at 743 K. Electrochem. Commun., 2001, 3(9): 519.

[36]

Y.L. Liu, J.H. Lan, L. Wang, et al., The influence of F ion on the electrochemical behavior and coordination properties of uranium in LiCl-KCl molten salt, Electrochimica Acta, 404(2022), art. No. 139573.

[37]

Maltsev DS, Volkovich VA, Vasin BD, Vladykin EN. An electrochemical study of uranium behaviour in LiCl-KCl-CsCl eutectic melt. J. Nucl. Mater., 2015, 467, 956.

[38]

H.D. Jiao, W.L. Song, H.S. Chen, M.Y. Wang, S.Q. Jiao, and D.N. Fang, Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis, J. Clean. Prod., 261(2020), art. No. 121314.

[39]

Léon A, Schild D, Fichtner M. Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy. J. Alloys Compd., 2005, 404–406, 766.

[40]

Shlyapnikov IM, Mercier HPA, Goreshnik EA, Schrobilgen GJ, Mazej Z. Crystal structures and Raman spectra of imidazolium poly[perfluorotitanate(IV)] salts containing the [TiF6]2−, ([Ti2F9]), and [Ti2Fn]3− and the new [Ti4F20]4− and [Ti5F23]3− anions. Inorg. Chem., 2013, 52(15): 8315.

[41]

Miyaoka H, Hasebe K, Sawada M, et al. Raman spectrum and normal mode analysis of α-TiCl3. Vib. Spectrosc., 1998, 17(2): 183.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/