Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries

Haichao Li , Zengwu Wei , Yu Xia , Junshan Han , Xing Li

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 621 -629.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 621 -629. DOI: 10.1007/s12613-022-2525-1
Article

Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries

Author information +
History +
PDF

Abstract

Aqueous zinc batteries with low cost and inherent safety are considered to be the most promising energy storage devices. However, they suffer from poor cycling stability and low coulombic efficiencies caused by the adverse zinc dendrites on the anodes during the discharging/charging processes. Chitosan is a kind of natural amino polysaccharide, which is rich in nitrogen and carbon. When sintered at high temperatures, carbon membranes have been achieved with excellent conductivity and graphitization degree, which could enhance the ability to induce zinc ion uniform deposition to some extent. In this work, a type of carbon membrane using chitosan as raw materials has been fabricated by sintering, and then assembled as the protect layers in aqueous zinc batteries. The results show that the samples could retain smoother surfaces when adopting the sintering temperature of 800°C, and the assembled batteries are able to achieve about 700 h at a current density of 0.25 mA·cm−2, which is far longer than those of the similar batteries without any carbon membranes.

Keywords

carbon membrane / dendrites / chitosan / sintering process / zinc batteries

Cite this article

Download citation ▾
Haichao Li, Zengwu Wei, Yu Xia, Junshan Han, Xing Li. Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 621-629 DOI:10.1007/s12613-022-2525-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng ZY, Peng WJ, Wang ZX, et al. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater., 2021, 28(10): 1549.

[2]

Li N, Yang SQ, Chen HS, Jiao SQ, Song WL. Mechano-electrochemical perspectives on flexible lithium-ion batteries. Int. J. Miner. Metall. Mater., 2022, 29(5): 1019.

[3]

Qin XH, Du YH, Zhang PC, et al. Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1684.

[4]

A. Samanta and C.R. Raj, Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery, J. Power Sources, 455(2020), art. No. 227975.

[5]

Q. Guan, Y.P. Li, X.X. Bi, et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air, Adv. Energy Mater., 9(2019), No. 41, art. No. 1901434.

[6]

Zhao ZM, Zhao JW, Hu ZL, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci., 2019, 12(6): 1938.

[7]

Parker JF, Chervin CN, Pala IR, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, 2017, 356(6336): 415.

[8]

M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.

[9]

L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090.

[10]

Y.X. Zeng, X.Y. Zhang, R.F. Qin, et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31(2019), No. 36, art. No. 1903675.

[11]

Wu LS, Dong YF. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Mater., 2021, 41, 715.

[12]

Qiao YJ, Zhang H, Hu YX, et al. A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1611.

[13]

Zhao XY, Liang XQ, Li Y, Chen QG, Chen MH. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater., 2021, 42, 533.

[14]

P. Akbarzadeh and N. Koukabi, Easy conversion of nitrogen-rich silk cocoon biomass to magnetic nitrogen-doped carbon nanomaterial for supporting of Palladium and its application, Appl. Organomet. Chem., 35(2021), No. 1, art. No. e6039.

[15]

Tian DH, Han ZC, Wang MY, Jiao SQ. Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. Int. J. Miner. Metall. Mater., 2020, 27(12): 1687.

[16]

H.Q. Tang, C. Chen, T. Liu, and Z.Y. Tang, Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material, J. Electroanal. Chem., 858(2020), art. No. 113789.

[17]

Zhang Y, Deng SJ, Li YH, et al. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Storage Mater., 2020, 29, 52.

[18]

Wu LS, Zhang Y, Shang P, Dong YF, Wu ZS. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J. Mater. Chem. A, 2021, 9(48): 27408.

[19]

Y.L. Huang, W.Y. He, P. Zhang, and X.H. Lu, Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries, Funct. Mater. Lett., 11(2018), No. 6, art. No. 1840006.

[20]

Wu CP, Xie KX, Ren KX, Yang S, Wang QH. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Trans., 2020, 49(48): 17629.

[21]

Zhang H, Yang Y, Ren DS, Wang L, He XM. Graphite as anode materials: Fundamental mechanism recent progress and advances. Energy Storage Mater., 2021, 36, 147.

[22]

Ruan DS, Zou K, Du K, et al. Recycling of graphite anode from spent lithium-ion batteries for preparing Fe-N-doped carbon ORR catalyst. ChemCatChem, 2021, 13(8): 2025.

[23]

H.J. Qiu, P. Du, K.L. Hu, et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries, Adv. Mater., 31(2021), No. 19, art. No. 1900843.

[24]

X. Gao, H.W. Wu, W.J. Li, et al., H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842.

[25]

C.G. Li, X.D. Zhang, W. He, G.G. Xu, and R. Sun, Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications, J. Power Sources, 449(2020), art. No. 227596.

[26]

Li GZ, Huang ZX, Chen JB, et al. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials. J. Mater. Chem. A, 2020, 8(4): 1975.

[27]

Chao DL, Zhou WH, Ye C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem., 2019, 131(23): 7905.

[28]

G. Marciniuk, R.T. Ferreira, A.V. Pedroso, et al., Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation, Bull. Mater. Sci., 44(2021), No. 1, art. No. 62.

[29]

Li G, Liu Z, Huang Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy, 2018, 3(12): 1076.

[30]

X.Y. Gao, W. Yin, and X.Q. Liu, Carbon nanotubes-based elecrode for Zn ion batteries, Mater. Res. Bull., 138(2021), art. No. 111246.

[31]

Jiang HR, Wu MC, Ren YX, Shyy W, Zhao TS. Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy, 2018, 213, 366.

[32]

Y.Y. Xu, P.L. Deng, G.D. Chen, et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1906081.

[33]

S.J. Yi, X.P. Qin, C.H. Liang, et al., Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries, Appl. Catal. B, 264(2020), art. No. 118537.

[34]

Y.Z. Liu, X.W. Chi, Q. Han, et al., α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, J. Power Sources, 443(2019), art. No. 227244.

[35]

Yue XJ, Liu HD, Liu P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun., 2019, 55(11): 1647.

[36]

Tan P, Chen B, Xu HR, et al. Nanoporous NiO/Ni(OH)2 plates incorporated with carbon nanotubes as active materials of rechargeable hybrid zinc batteries for improved energy efficiency and high-rate capability. J. Electrochem. Soc., 2018, 165(10): A2119.

[37]

J. Yu, J.D. Luo, H. Zhang, Z. Zhang, J.C. Wei, and Z.Y. Yang, Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries, Electrochim. Acta, 322(2019), art. No. 134757.

[38]

X. Wu, S. Chen, Y. Feng, et al., Microwave-assisted synthesis of carbon nanotubes threaded core-shell CoPx/Co-Nx-C@CNT and its performance as an efficient bifunctional oxygen catalyst for the rechargeable zinc-air battery, Mater. Today Phys., 9(2019), art. No. 100132.

[39]

Li TF, Li M, Zhang MR, et al. Immobilization of Fe3N nan-oparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon, 2019, 153, 364.

[40]

Liu CX, Li R, Liu WJ, Shen GZ, Chen D. Chitosan-assisted fabrication of a network C@V2O5 cathode for high-performance Zn-ion batteries. ACS Appl. Mater. Interfaces, 2021, 13(31): 37194.

[41]

Y. Gao, X.T. Qiu, X.L. Wang, X.C. Chen, A.Q. Gu, and Z.L. Yu, Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries, Nanotechnology, 31(2020), No. 15, art. No. 155702.

[42]

Lu K, Zhang H, Song B, Pan W, Ma HY, Zhang JT. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta, 2019, 296, 755.

[43]

Shu M, Li X, Duan LQ, Zhu MT, Xin X. Nitrogen-doped polymer nanofibers decorated with Co nanoparticles for uniform lithium nucleation/growth in lithium metal batteries. Nanoscale, 2020, 12(16): 8819.

[44]

Conder J, Vaulot C, Marino C, Villevieille C, Ghimbeu CM. Chitin and chitosan—Structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Appl. Energy Mater., 2019, 2(7): 4841.

[45]

Yin DD, Han C, Bo XJ, Liu J, Guo LP. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions. J. Colloid Interface Sci., 2019, 533, 578.

[46]

Zhou J, Wang H, Yang W, Wu SJ, Han W. Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application. Carbohydr. Polym., 2018, 198, 364.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/