Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries
Haichao Li , Zengwu Wei , Yu Xia , Junshan Han , Xing Li
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 621 -629.
Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries
Aqueous zinc batteries with low cost and inherent safety are considered to be the most promising energy storage devices. However, they suffer from poor cycling stability and low coulombic efficiencies caused by the adverse zinc dendrites on the anodes during the discharging/charging processes. Chitosan is a kind of natural amino polysaccharide, which is rich in nitrogen and carbon. When sintered at high temperatures, carbon membranes have been achieved with excellent conductivity and graphitization degree, which could enhance the ability to induce zinc ion uniform deposition to some extent. In this work, a type of carbon membrane using chitosan as raw materials has been fabricated by sintering, and then assembled as the protect layers in aqueous zinc batteries. The results show that the samples could retain smoother surfaces when adopting the sintering temperature of 800°C, and the assembled batteries are able to achieve about 700 h at a current density of 0.25 mA·cm−2, which is far longer than those of the similar batteries without any carbon membranes.
carbon membrane / dendrites / chitosan / sintering process / zinc batteries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
A. Samanta and C.R. Raj, Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery, J. Power Sources, 455(2020), art. No. 227975. |
| [5] |
Q. Guan, Y.P. Li, X.X. Bi, et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air, Adv. Energy Mater., 9(2019), No. 41, art. No. 1901434. |
| [6] |
|
| [7] |
|
| [8] |
M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. |
| [9] |
L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090. |
| [10] |
Y.X. Zeng, X.Y. Zhang, R.F. Qin, et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31(2019), No. 36, art. No. 1903675. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
P. Akbarzadeh and N. Koukabi, Easy conversion of nitrogen-rich silk cocoon biomass to magnetic nitrogen-doped carbon nanomaterial for supporting of Palladium and its application, Appl. Organomet. Chem., 35(2021), No. 1, art. No. e6039. |
| [15] |
|
| [16] |
H.Q. Tang, C. Chen, T. Liu, and Z.Y. Tang, Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material, J. Electroanal. Chem., 858(2020), art. No. 113789. |
| [17] |
|
| [18] |
|
| [19] |
Y.L. Huang, W.Y. He, P. Zhang, and X.H. Lu, Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries, Funct. Mater. Lett., 11(2018), No. 6, art. No. 1840006. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
H.J. Qiu, P. Du, K.L. Hu, et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries, Adv. Mater., 31(2021), No. 19, art. No. 1900843. |
| [24] |
X. Gao, H.W. Wu, W.J. Li, et al., H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842. |
| [25] |
C.G. Li, X.D. Zhang, W. He, G.G. Xu, and R. Sun, Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications, J. Power Sources, 449(2020), art. No. 227596. |
| [26] |
|
| [27] |
|
| [28] |
G. Marciniuk, R.T. Ferreira, A.V. Pedroso, et al., Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation, Bull. Mater. Sci., 44(2021), No. 1, art. No. 62. |
| [29] |
|
| [30] |
X.Y. Gao, W. Yin, and X.Q. Liu, Carbon nanotubes-based elecrode for Zn ion batteries, Mater. Res. Bull., 138(2021), art. No. 111246. |
| [31] |
|
| [32] |
Y.Y. Xu, P.L. Deng, G.D. Chen, et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1906081. |
| [33] |
S.J. Yi, X.P. Qin, C.H. Liang, et al., Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries, Appl. Catal. B, 264(2020), art. No. 118537. |
| [34] |
Y.Z. Liu, X.W. Chi, Q. Han, et al., α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, J. Power Sources, 443(2019), art. No. 227244. |
| [35] |
|
| [36] |
|
| [37] |
J. Yu, J.D. Luo, H. Zhang, Z. Zhang, J.C. Wei, and Z.Y. Yang, Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries, Electrochim. Acta, 322(2019), art. No. 134757. |
| [38] |
X. Wu, S. Chen, Y. Feng, et al., Microwave-assisted synthesis of carbon nanotubes threaded core-shell CoPx/Co-Nx-C@CNT and its performance as an efficient bifunctional oxygen catalyst for the rechargeable zinc-air battery, Mater. Today Phys., 9(2019), art. No. 100132. |
| [39] |
|
| [40] |
|
| [41] |
Y. Gao, X.T. Qiu, X.L. Wang, X.C. Chen, A.Q. Gu, and Z.L. Yu, Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries, Nanotechnology, 31(2020), No. 15, art. No. 155702. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
/
| 〈 |
|
〉 |