Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution
Shipeng Wang , Ziyan Liu , Qiangchun Liu , Baojun Wang , Wei Wei , Hao Wu , Zijie Xu , Shikuo Li , Fangzhi Huang , Hui Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 494 -503.
Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution
Lightweight and efficient carbon-based microwave absorbents are significant in addressing the increasing severity of electromagnetic pollution. In this study, hierarchical NiO/Ni nanosheets with a tuneable phase and morphology supported on a carbon fiber substrate (CF@NiO/Ni) were fabricated using a hydrothermal approach and post-annealing treatment. As the annealing temperature increases, more metallic Ni is formed, and an apparent porosity appears on the sheet surface. Benefiting from the advantages of a three-dimensional (3D) conducting network, hierarchical porous structure, reinforced dipole/interface polarization, multiple scattering, and good impedance matching, the CF@NiO/Ni-500 composite exhibits an excellent microwave absorption performance even at a filling rate of only 3wt%. Specifically, its minimal reflection loss is −43.92 dB, and the qualified bandwidth is up to 5.64 GHz. In addition, the low radar cross-section area of the CF@NiO/Ni composite coating confirms its strong ability to suppress electromagnetic wave scattering. We expect that this work could contribute to a deeper understanding of the phase and morphology evolution in enhancing microwave absorption.
carbon fiber / nickel / nickel oxide / interfacial polarization / microwave absorption
| [1] |
|
| [2] |
|
| [3] |
X.L. Li, X.W. Yin, C.Q. Song, et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1803938. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
L.S. Xing, X. Li, Z.C. Wu, et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption, Chem. Eng. J., 379(2020), art. No. 122241. |
| [9] |
|
| [10] |
J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, and H.J. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application, Composites Part B, 176(2019), art. No. 107240. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv, and J.J. Yang, Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption, Adv. Funct. Mater., 30(2020), No. 45, art. No. 2002595. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Y.S. Huo, Y.J. Tan, K. Zhao, Z.X. Lu, L.Y. Zhong, and Y.F. Tang, Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology, Chem. Phys. Lett., 763(2021), art. No. 138230. |
| [22] |
H.S. Liang, H. Xing, M. Qin, and H.J. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials, Composites Part A, 135(2020), art. No. 105959. |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
S.P. Wang, Q.S. Li, K. Hu, S.N. Wang, Q.C. Liu, and X.K. Kong, A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption, Appl. Surf. Sci., 544(2021), art. No. 148891. |
| [31] |
S.C. Wang, H.L. Liu, J. Hu, et al., In situ synthesis of NiO@Ni micro/nanostructures as supercapacitor electrodes based on femtosecond laser adjusted electrochemical anodization, Appl. Surf. Sci., 541(2021), art. No. 148216. |
| [32] |
|
| [33] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, and R.C. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099. |
| [34] |
J.J. Ding, L. Wang, Y.H. Zhao, et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption, Small, 15(2019), No. 36, art. No. e1902885. |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. |
| [51] |
S.P. Wang, Q.S. Li, K. Hu, Q.C. Liu, X.F. Liu, and X.K. Kong, Activating microwave absorption performance by reduced graphene oxide-borophene heterostructure, Composites Part A, 138(2020), art. No. 106033. |
| [52] |
J.J. Pan, X. Sun, Z.Z. Jin, et al., Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption, Composites Part B, 228(2022), art. No. 109422. |
/
| 〈 |
|
〉 |