Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review

Jingjing Zhang , Bing Zhang , Xiubo Xie , Cui Ni , Chuanxin Hou , Xueqin Sun , Xiaoyang Yang , Yuping Zhang , Hideo Kimura , Wei Du

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 14 -24.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 14 -24. DOI: 10.1007/s12613-022-2519-z
Invited Review

Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review

Author information +
History +
PDF

Abstract

Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources. However, storing hydrogen in a compact, inexpensive, and safe manner is the main restriction on the extensive utilization of hydrogen energy. Magnesium (Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity (7.6wt%), good performance, and low cost. However, the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome. In this paper, we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials, including carbons, metal-organic frameworks, and other materials. Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.

Keywords

magnesium-based materials / hydrogen storage / nanoconfinement / carbon materials

Cite this article

Download citation ▾
Jingjing Zhang, Bing Zhang, Xiubo Xie, Cui Ni, Chuanxin Hou, Xueqin Sun, Xiaoyang Yang, Yuping Zhang, Hideo Kimura, Wei Du. Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 14-24 DOI:10.1007/s12613-022-2519-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Q, Lai YQ, Liu FY, Jiang LX, Jia M, Wang XL. Sb2S3 nanorods/porous-carbon composite from natural stibnite ore as high-performance anode for lithium-ion batteries. Trans. Nonferrous Met. Soc. China, 2021, 31(7): 2051.

[2]

Cao HJ, Pistidda C, Castro Riglos MV, et al. Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH2)2-LiH. Sustainable Energy Fuels, 2020, 4(4): 1915.

[3]

Zang XB, Li LT, Sun ZX, et al. et al., A simple physical mixing method for MnO2/MnO nanocomposites with superior Zn2+ storage performance. Trans. Nonferrous Met. Soc. China, 2020, 30(12): 3347.

[4]

Zhang BP, Xia GL, Sun DL, Fang F, Yu XB. Magnesium hydride nanoparticles self-assembled on graphene as anode material for high-performance lithium-ion batteries. ACS Nano, 2018, 12(4): 3816.

[5]

Zhu QL, Xu Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci., 2015, 8(2): 478.

[6]

Chen ZJ, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK. Porous materials for hydrogen storage. Chen, 2022, 8(3): 693

[7]

X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101.

[8]

Cho H, Hyeon S, Park H, Kim J, Cho ES. Ultrathin magnesium nanosheet for improved hydrogen storage with fishbone shaped one-dimensional carbon matrix. ACS Appl. Energy Mater., 2020, 3(9): 8143.

[9]

X.B. Xie, C.X. Hou, D. Wu, et al., Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application, J. Alloys Compd., 891(2022), art. No. 161967.

[10]

Luo Q, Li JD, Li B, Liu B, Shao HY, Li Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloys, 2019, 7(1): 58.

[11]

Berezovets V, Kytsya A, Zavaliy I, Yartys VA. Kinetics and mechanism of MgH2 hydrolysis in MgCl2 solutions. Int. J. Hydrogen Energy, 2021, 46(80): 40278.

[12]

Tanaka F, Nakagawa Y, Isobe S, Hashimoto N. Hydrogen absorption/desorption properties of light metal hydroxide systems. Int. J. Energy Res., 2020, 44(4): 2941.

[13]

Han DJ, Bang KR, Cho H, Cho ES. Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride. Korean J. Chem. Eng., 2020, 37(8): 1306.

[14]

X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064.

[15]

Ali NA, Sazelee NA, Ismail M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. Int. J. Hydrogen Energy, 2021, 46(62): 31674.

[16]

Sadhasivam T, Kim HT, Jung S, Roh SH, Park JH, Jung HY. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renewable Sustainable Energy Rev., 2017, 72, 523.

[17]

Tian M, Shang CX. Mg-based composites for enhanced hydrogen storage performance. Int. J. Hydrogen Energy, 2019, 44(1): 338.

[18]

Berezovets VV, Denys RV, Zavaliy IY, Kosarchyn YV. Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy, 2022, 47(11): 7289.

[19]

Zholdayakova S, Gemma R, Uchida HH, Sato M, Matsumura Y. Mechanical composition control for Ti-based hydrogen storage alloys. e-J. Surf. Sci. Nanotechnol., 2018, 16, 298.

[20]

Huang TD, Wu SY, Jiang H, Lu YP, Wang TM, Li TJ. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1318.

[21]

Chandra S, Sharma P, Muthukumar P, Tatiparti SSV. Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes. Int. J. Hydrogen Energy, 2021, 46(36): 19031.

[22]

Zhou NX, Yamaguchi M, Miyaoka H, Kojima Y. Temperature rise of LaNi5-based alloys by hydrogen adsorption. Chem. Commun., 2021, 57(74): 9374.

[23]

IOP Conf. Ser.: Earth Environ. Sci., 2021, 692(2) art. No. 022002

[24]

Lai QW, Yang YW, Aguey-Zinsou KF. Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage. Int. J. Hydrogen Energy, 2019, 44(41): 23225.

[25]

Yuan JG, Huang HX, Jiang Z, et al. Ni-doped carbon nan-otube-Mg(BH4)2 composites for hydrogen storage. ACS Appl. Nano Mater., 2021, 4(2): 1604.

[26]

Beatrice CAG, Moreira BR, de Oliveira AD, Passador FR, de Almeida Neto GR, Leiva DR, Pessan LA. Development of polymer nanocomposites with sodium alanate for hydrogen storage. Int. J. Hydrogen Energy, 2020, 45(8): 5337.

[27]

Hosseinabadi N. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. Int. J. Hydrogen Energy, 2021, 46(7): 5025.

[28]

Materials, 2019, 12(17) art. No. 2724

[29]

Kumar R, Karkamkar A, Bowden M, Autrey T. Solidstate hydrogen rich boron-nitrogen compounds for energy storage. Chem. Soc. Rev., 2019, 48(21): 5350.

[30]

Nielsen TK, Besenbacher F, Jensen TR. Nanoconfined hydrides for energy storage. Nanoscale, 2011, 3(5): 2086.

[31]

Wang K, Zhang X, Ren ZH, Zhang XL, Hu JJ, Gao MX, Pan HG, Liu YF. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Mater., 2019, 23, 79.

[32]

Song MY, Kwak YJ. Hydrogenation and dehydrogenation behaviors of Mg2Ni synthesized by sintering pelletized mixtures under an Ar atmosphere. J. Nanosci. Nanotechnol., 2019, 19(10): 6571.

[33]

de Rango P, Fruchart D, Aptukov V, Skryabina N. Fast forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage. Int. J. Hydrogen Energy, 2020, 45(14): 7912.

[34]

Zhang J, He L, Yao Y, et al. Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2. Renewable Energy, 2020, 154, 1229.

[35]

Lu ZY, Yu HJ, Lu X, et al. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met., 2021, 40(11): 3195.

[36]

Zhou X, Liu ZF, Su F, Fan YF. Magnesium composites with hybrid nano-reinforcements: 3D simulation of dynamic tensile response at elevated temperatures. Trans. Non-ferrous Met. Soc. China, 2021, 31(3): 636.

[37]

Zhang JF, Li ZN, Wu YF, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv., 2019, 9(1): 408.

[38]

Yong H, Wei X, Hu JF, et al. Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg-Ce-Y based alloy. Renewable Energy, 2020, 162, 2153.

[39]

Catalysts, 2018, 8(2) art. No. 89

[40]

Seo MD, Kim A, Jung H. Co metal nanoparticles incorporated three-dimensional mesoporous graphene nanohybrids for electrochemical hydrogen storage. J. Solid State Chem., 2019, 269, 151.

[41]

Yang XL, Ji L, Yan NH, et al. Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage. Dalton Trans., 2019, 48(33): 12699.

[42]

Zhang J, Yan S, Xia GL, et al. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride. J. Magnes. Alloys, 2021, 9(2): 647.

[43]

Gattia DM, Jangir M, Jain IP. Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J. Alloys Compd., 2019, 801, 188.

[44]

Wiesinger M, Maitland B, Elsen H, Pahl J, Harder S. Stabilizing magnesium hydride complexes with neutral ligands. Eur. J. Inorg. Chem., 2019, 2019(41): 4433.

[45]

Chen SR, Tao RM, Guo C, et al. A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials. Energy Storage Mater., 2021, 41, 758.

[46]

Shang YY, Pistidda C, Gizer G, Klassen T, Dornheim M. Mg-based materials for hydrogen storage. J. Magnes. Alloys, 2021, 9(6): 1837.

[47]

Liang JJ, Kung WCP. Confinement of Mg-MgH2 systems into carbon nanotubes changes hydrogen sorption energetics. J. Phys. Chem. B, 2005, 109(38): 17837.

[48]

Y.N. Liu, J.L. Zhu, Z.B. Liu, Y.F. Zhu, J.G. Zhang, and L.Q. Li, Magnesium nanoparticles with Pd decoration for hydrogen storage, Front. Chem., 7(2020), art. No. 949.

[49]

Asselin J, Boukouvala C, Hopper ER, Ramasse QM, Biggins JS, Ringe E. Tents, chairs, tacos, kites, and rods: Shapes and plasmonic properties of singly twinned magnesium nanoparticles. ACS Nano, 2020, 14(5): 5968.

[50]

Schneemann A, White JL, Kang S, et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev., 2018, 118(22): 10775.

[51]

Cheng FY, Tao ZL, Liang J, Chen J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun., 2012, 48(59): 7334.

[52]

Zhou CQ, Hu CD, Li YT, Zhang QA. Crystallite growth characteristics of Mg during hydrogen desorption of MgH2. Prog. Nat. Sci. Mater. Int., 2020, 30(2): 246.

[53]

Li Q, Lu YF, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys, 2021, 9(6): 1922.

[54]

Li Q, Lin X, Luo Q, et al. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(1): 32.

[55]

Nyahuma FM, Zhang LT, Song MY, et al. Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst. Int. J. Miner. Metall. Mater., 2022, 29(9): 1788.

[56]

Jia Y, Sun CH, Shen SH, Zou J, Mao SS, Yao XD. Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renewable Sustainable Energy Rev., 2015, 44, 289.

[57]

Au YS, Yan YG, de Jong KP, Remhof A, de Jongh PE. Pore confined synthesis of magnesium boron hydride nanoparticles. J. Phys. Chem. C, 2014, 118(36): 20832.

[58]

Z.Y. Han, M.L. Yeboah, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation, Appl. Surf. Sci., 504(2020), art. No. 144491.

[59]

Z. Ding, H. Li, and L. Shaw, New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system, Chem. Eng. J., 385(2020), art. No. 123856.

[60]

Z.F. Wu, B. Tan, W.P. Lustig, et al., Magnesium based coordination polymers: Syntheses, structures, properties and applications, Coord. Chem. Rev., 399(2019), art. No. 213025.

[61]

Aguey-Zinsou KF, Ares-Fernández JR. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci., 2010, 3(5): 526.

[62]

Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manage., 2018, 165, 602.

[63]

Cui J, Wang H, Sun DL, Zhang QA, Zhu M. Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition. Rare Met., 2016, 35(5): 401.

[64]

H. Liu, P. Sun, R.C. Bowman Jr, Z.Z. Fang, Y. Liu, and C.S. Zhou, Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride, J. Power Sources, 454(2020), art. No. 227936.

[65]

Shao HY, He LQ, Lin HJ, Li HW. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol., 2018, 6(3): 445.

[66]

Wang Y, Ding ZM, Li XJ, et al. Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres. Dalton Trans., 2020, 49(11): 3495.

[67]

Lototskyy M, Sibanyoni JM, Denys RV, Williams M, Pollet BG, Yartys VA. Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen. Carbon, 2013, 57, 146.

[68]

Matsumoto M, Kita T, Tanaka K. Hydrogen adsorption/desorption properties of anhydrous metal oxalates; metal = Mg2+ and Ca2+. Bull. Chem. Soc. Jpn., 2020, 93(8): 985.

[69]

Chen M, Pu YH, Li ZY, et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res., 2020, 13(8): 2063.

[70]

Bardhan R, Ruminski AM, Brand A, Urban JJ. Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials. Energy Environ. Sci., 2011, 4(12): 4882.

[71]

Mukherjee D, Okuda J. Molecular magnesium hydrides. Angew. Chem. Int. Ed., 2018, 57(6): 1458.

[72]

Cheung S, Deng WQ, van Duin ACT, Goddard WA III. ReaxFFMgH reactive force field for magnesium hydride systems. J. Phys. Chem. A, 2005, 109(5): 851.

[73]

White JL, Strange NA, Sugar JD, et al. Melting of magnesium borohydride under high hydrogen pressure: Thermodynamic stability and effects of nanoconfinement. Chem. Mater., 2020, 32(13): 5604.

[74]

Q.Y. Zhang, Y.K. Huang, T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953.

[75]

Ma ZW, Zhang QY, Panda S, et al. In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. Sustainable Energy Fuels, 2020, 4(9): 4694.

[76]

Schneemann A, Wan LF, Lipton AS, et al. Nanoconfinement of molecular magnesium borohydride captured in a bipyridine-functionalized metal-organic framework. ACS Nano, 2020, 14(8): 10294.

[77]

Song PA, Dai JF, Chen GR, Yu YM, Fang ZP, Lei WW, Fu SY, Wang H, Chen ZG. Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement. ACS Nano, 2018, 12(9): 9266.

[78]

de Jongh DPE, Adelhelm DP. Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem, 2010, 3(12): 1332.

[79]

Wang L, Rawal A, Quadir MZ, Aguey-Zinsou KF. Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility. Int. J. Hydrogen Energy, 2017, 42(20): 14144.

[80]

Yu XB, Tang ZW, Sun DL, Ouyang LZ, Zhu M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci., 2017, 88, 1.

[81]

Xia GL, Tan YB, Chen XW, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater., 2015, 27(39): 5981.

[82]

Xia GL, Tan YB, Wu FL, et al. Graphene-wrapped reversible reaction for advanced hydrogen storage. Nano Energy, 2016, 26, 488.

[83]

Nielsen TK, Manickam K, Hirscher M, Besenbacher F, Jensen TR. Confinement of MgH2 nanoclusters within nano-porous aerogel scaffold materials. ACS Nano, 2009, 3(11): 3521.

[84]

de Jongh PE, Wagemans RWP, Eggenhuisen TM, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem. Mater., 2007, 19(24): 6052.

[85]

N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.03.01

[86]

Guo JH, Li SJ, Su Y, Chen G. Theoretical study of hydrogen storage by spillover on porous carbon materials. Int. J. Hydrogen Energy, 2020, 45(48): 25900.

[87]

X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160.

[88]

le TT, Pistidda C, Nguyen VH, et al. Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. Int. J. Hydrogen Energy, 2021, 46(46): 23723.

[89]

White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 2009, 38(2): 481.

[90]

Paskevicius M, Tian HY, Sheppard DA, et al. Magnesium hydride formation within carbon aerogel. J. Phys. Chem. C, 2011, 115(5): 1757.

[91]

Jia Y, Sun CH, Cheng LN, et al. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys., 2013, 15(16): 5814.

[92]

Xia KS, Gao QM, Wu CD, Song SQ, Ruan MR. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45(10): 1989.

[93]

Shinde SS, Kim DH, Yu JY, Lee JH. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale, 2017, 9(21): 7094.

[94]

Sanz-Moral LM, Navarrete A, Sturm G, et al. Release of hydrogen from nanoconfined hydrides by application of microwaves. J. Power Sources, 2017, 353, 131.

[95]

Mol. Phys., 2020, 118(21–22) art. No. e1757169

[96]

Sun WW, Li SF, Mao JF, et al. Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Trans., 2011, 40(21): 5673.

[97]

Atashrouz S, Rahmani M. Predicting hydrogen storage capacity of metal—organic frameworks using group method of data handling. Neural Comput. Appl., 2020, 32(18): 14851.

[98]

Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. J. Energy Chem., 2019, 30, 132.

[99]

Salehabadi A, Morad N, Ahmad MI. A study on electrochemical hydrogen storage performance of β-oppper phthalocyanine rectangular nanocuboids. Renewable Energy, 2020, 146, 497.

[100]

Ahmed A, Liu YY, Purewal J, et al. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci., 2017, 10(11): 2459.

[101]

L. Ren, W. Zhu, Q.Y. Zhang, et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage, Chem. Eng. J., 434(2022), art. No. 134701.

[102]

Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790.

[103]

Lai QW, Aguey-Zinsou KF. Destabilisation of Ca(BH4)2 and Mg(BH4)2 via confinement in nanoporous Cu2S hollow spheres. Sustainable Energy Fuels, 2017, 1(6): 1308.

[104]

Xie XB, Ma XJ, Liu P, Shang JX, Li XG, Liu T. Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS. ACS Appl. Mater. Interfaces, 2017, 9(7): 5937.

[105]

Li YL, Yuan H, Chen YB, Wei XY, Sui KY, Tan YQ. Application and exploration of nanofibrous strategy in electrode design. J. Mater. Sci. Technol., 2021, 74, 189.

[106]

G.Z. Li, H. Yuan, J.J. Mou, et al., Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes, Compos. Commun., 29(2022), art. No. 101043.

[107]

Duan CW, Tian YT, Wang XY, et al. Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2. Renewable Energy, 2022, 187, 417.

[108]

B.G. Liu, B. Zhang, H.X. Huang, et al., Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.019

[109]

B. Liu, B. Zhang, X. Chen, et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst, Mater. Today Nano, 17(2022), art. No. 100168.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/