Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion

Seyed Moien Faregh , Ghader Faraji , Mahmoud Mosavi Mashhadi , Mohammad Eftekhari

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2241 -2251.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2241 -2251. DOI: 10.1007/s12613-022-2514-4
Article

Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion

Author information +
History +
PDF

Abstract

Texture evolution and mechanical anisotropic behavior of an ultraftne-grained (UFG) pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion (HTCEE) was investigated. For the UFG tube, different deformation behavior and a significant anisotropy in tensile properties were recorded along the longitudinal and peripheral directions. The HTCEE process increased the yield strength and the ultimate strength in the axial direction by 3.6 and 1.67 times, respectively. Also, this process increased the yield strength and the ultimate strength in the peripheral direction by 1.15 and 1.12 times, respectively. The ratio of ultimate tensile strength in the peripheral direction to that in the axial direction, as a criterion for mechanical anisotropy, are 1.7 and 1.16 for the as-annealed coarse-grained and the HTCEE processed UFG tube, respectively. The results are indicative of a reducing effect of the HTCEE process on the mechanical anisotropy. Besides, after HTCEE process, a low loss of ductility was observed in both directions, which is another advantage of HTCEE process. Hardness measurements revealed a slight increment of hardness values in the peripheral direction, which is in agreement with the trend of tensile tests. Texture analysis was conducted in order to determine the oriental distribution of the grains. The obtained {111} pole figures demonstrate the texture evolution and reaffirm the anisotropy observed in mechanical properties. Scanning electron microscopy micrographs showed that different modes of fracture occurred after tensile testing in the two orthogonal directions.

Keywords

severe plastic deformation / ultrafine grained / hydrostatic tube cyclic expansion extrusion / anisotropy / texture

Cite this article

Download citation ▾
Seyed Moien Faregh, Ghader Faraji, Mahmoud Mosavi Mashhadi, Mohammad Eftekhari. Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(12): 2241-2251 DOI:10.1007/s12613-022-2514-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci., 2006, 51(7): 881.

[2]

Eftekhari M, Faraji G, Nikbakht S, Rashed R, Sharifzadeh R, Hildyard R, Mohammadpour M. Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion. Mater. Sci. Eng. A, 2017, 703, 551.

[3]

Liu SL, Zhao YH. Mechanical properties, deformation and fracture mechanisms of bimodal Cu under tensile test. Rev. Adv. Mater. Sci., 2021, 60(1): 15.

[4]

Liang N, Zhao Y, Wang J, Zhu Y. Effect of grain structure on charpy impact behavior of copper. Sci. Rep., 2017, 7(1): 1

[5]

Al-Zubaydi A, Figueiredo RB, Huang Y, Langdon TG. Structural and hardness inhomogeneities in Mg-Al-Zn alloys processed by high-pressure torsion. J. Mater. Sci., 2013, 48(13): 4661.

[6]

Lin JB, Wang QD, Chen YJ, Liu MP, Roven HJ. Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression. Trans. Nonferrous Met. Soc. China, 2010, 20(11): 2081.

[7]

Pardis N, Chen C, Shahbaz M, Ebrahimi R, Toth LS. Development of new routes of severe plastic deformation through cyclic expansion-extrusion process. Mater. Sci. Eng. A, 2014, 613, 357.

[8]

Pérez-Prado MT, Valle D, Ruano OA. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Mater., 2004, 51(11): 1093.

[9]

Liu XR, Wei DJ, Zhuang LM, Cai C, Zhao YH. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding. Mater. Sci. Eng. A, 2015, 642, 1.

[10]

Faraji G, Mosavi Mashhadi M, Kim HS. Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett., 2011, 65(19–20): 3009.

[11]

Eftekhari M, Fata A, Faraji G, Mosavi Mashhadi M. Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation. J. Alloys Compd., 2018, 742, 442.

[12]

Fata A, Eftekhari M, Faraji G, Mosavi Mashhadi M. Enhanced hot tensile ductility of Mg-3Al-1Zn alloy thin-walled tubes processed via a combined severe plastic deformation. J. Mater. Eng. Perform., 2018, 27(5): 2330.

[13]

Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube channel pressing (TCP). Mater. Sci. Eng. A, 2011, 528(15): 5066.

[14]

Torabzadeh H, Faraji G, Zalnezhad E. Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes. Trans. Indian Inst. Met., 2016, 69(6): 1217.

[15]

Tóth LS, Arzaghi M, Fundenberger JJ, Beausir B, Bouaziz O, Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting. Scripta Mater., 2009, 60(3): 175.

[16]

Motallebi Savarabadi M, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. J. Alloys Compd., 2019, 785, 163.

[17]

Motallebi Savarabadi M, Faraji G, Eftekhari M. Microstructure and mechanical properties of the commercially pure copper tube after processing by hydrostatic tube cyclic expansion extrusion (HTCEE). Met. Mater. Int., 2021, 27(6): 1686.

[18]

Tavakkoli V, Afrasiab M, Faraji G, Mosavi Mashhadi M. Severe mechanical anisotropy of high-strength ultrafine grained Cu-Zn tubes processed by parallel tubular channel angular pressing (PTCAP). Mater. Sci. Eng. A, 2015, 625, 50.

[19]

Faraji G, Roostae S, Seyyed Nosrati A, Kang JY, Kim HS. Microstructure and mechanical properties of ultra-finegrained Al-Mg-Si tubes produced by parallel tubular channel angular pressing process. Metall. Mater. Trans. A, 2015, 46(4): 1805.

[20]

Zhang LX, Chen WZ, Zhang WC, Wang WK, Wang ED. Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature. J. Mater. Process. Technol., 2016, 237, 65.

[21]

Sabirov I, Perez-Prado MT, Molina-Aldareguia JM, Semenova IP, Salimgareeva GK, Valiev RZ. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route. Scripta Mater., 2011, 64(1): 69.

[22]

Suh J, Victoria-Hernández J, Letzig D, Golle R, Volk W. Enhanced mechanical behavior and reduced mechanical anisotropy of AZ31 Mg alloy sheet processed by ECAP. Mater. Sci. Eng. A, 2016, 650, 523.

[23]

Meredith CS, Khan AS. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing. Int. J. Plast., 2012, 30–31, 202.

[24]

Al-Maharbi M, Karaman I, Beyerlein IJ, Foley D, Hartwig KT, Kecskes LJ, Mathaudhu SN. Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Mater. Sci. Eng. A, 2011, 528(25–26): 7616.

[25]

Mao QZ, Zhang YS, Liu JZ, Zhao YH. Breaking material property trade-offs via macrodesign of microstructure. Nano Lett., 2021, 21(7): 3191.

[26]

A. Meng, X. Chen, J.F. Nie, L. Gu, Q.Z. Mao, and Y.H. Zhao, Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging, J. Alloys Compd., 859(2021), art. No. 158222.

[27]

Wan YC, Tang B, Gao YH, Tang LL, Sha G, Zhang B, Liang NN, Liu CM, Jiang SN, Chen ZY, Guo XY, Zhao YH. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater., 2020, 200, 274.

[28]

Chen X, Liu CM, Wan YC, Jiang SN, Chen ZY, Zhao YH. Grain refinement mechanisms in gradient nanostructured AZ31B Mg alloy prepared via rotary swaging. Metall. Mater. Trans. A, 2021, 52(9): 4053.

[29]

Babaei A, Mosavi Mashhadi M. Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique. Prog. Nat. Sci. Mater. Int., 2014, 24(6): 623.

[30]

Eftekhari M, Faraji G, Bahrami M, Baniassadi M. Hydrostatic tube cyclic extrusion compression as a novel severe plastic deformation method for fabricating long nanostructured tubes. Met. Mater. Int., 2022, 28(7): 1725.

[31]

M. Eftekhari, G. Faraji, and M. Bahrami, Processing of commercially pure copper tubes by hydrostatic tube cyclic extrusion-compression (HTCEC) as a new SPD method, Arch. Civ. Mech. Eng., 21(2021), No. 3, art. No. 120.

[32]

Roodposhti PS, Farahbakhsh N, Sarkar A, Murty KL. Microstructural approach to equal channel angular processing of commercially pure titanium—A review. Trans. Nonferrous Met. Soc. China, 2015, 25(5): 1353.

[33]

Salimyanfard F, Reza Toroghinejad M, Ashrafizadeh F, Jafari M. EBSD analysis of nano-structured copper processed by ECAP. Mater. Sci. Eng. A, 2011, 528(16–17): 5348.

[34]

Mishra A, Richard V, Grégori F, Asaro RJ, Meyers MA. Microstructural evolution in copper processed by severe plastic deformation. Mater. Sci. Eng. A, 2005, 410–411, 290.

[35]

Faraji G, Mosavi Mashhadi M, Bushroa AR, Babaei A. TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater. Sci. Eng. A, 2013, 563, 193.

[36]

Valiev RZ, Alexandrov IV. Nanostructured materials from severe plastic deformation. Nanostructured Mater., 1999, 12(1–4): 35.

[37]

Máthis K, Gubicza J, Nam NH. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. J. Alloys Compd., 2005, 394(1–2): 194.

[38]

Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D. Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall. Mater., 1992, 40(2): 205.

[39]

Javidikia M, Hashemi R. Mechanical anisotropy in ultrafine grained aluminium tubes processed by parallel-tubular-channel angular pressing. Mater. Sci. Technol., 2017, 33(18): 2265.

[40]

Abdolvand H, Faraji G, Givi MKB, Hashemi R, Riazat M. Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation. Met. Mater. Int., 2015, 21(6): 1068.

[41]

Ciemiorek M, Chrominski W, Olejnik L, Lewandowska M. Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAP. Mater. Des., 2017, 130, 392.

[42]

Ebrahimi M, Djavanroodi F. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method. Prog. Nat. Sci. Mater. Int., 2014, 24(1): 68.

[43]

Fattah-Alhosseini A, Imantalab O, Mazaheri Y, Keshavarz MK. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process. Mater. Sci. Eng. A, 2016, 650, 8.

[44]

X.R. Liu, L.M. Zhuang, and Y.H. Zhao, Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing, Materials, 13(2020), No. 22, art. No. 5171.

[45]

Janeček M, Čížek J, Dopita M, Král R, Srba O. Mechanical properties and microstructure development of ultrafine-grained Cu processed by ECAP. Mater. Sci. Forum, 2008, 584–586, 440.

[46]

Babaei A, Faraji G, Mosavi Mashhadi M, Hamdi M. Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method. Mater. Sci. Eng. A, 2012, 558, 150.

[47]

Kocich R, Greger M, Kursa M, Szurman I, Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater. Sci. Eng. A, 2010, 527(23): 6386.

[48]

Shamsborhan M, Ebrahimi M. Production of nanostructure copper by planar twist channel angular extrusion process. J. Alloys Compd., 2016, 682, 552.

[49]

Ivanisenko Y, Kulagin R, Fedorov V, Mazilkin A, Scherer T, Baretzky B, Hahn H. High Pressure Torsion Extrusion as a new severe plastic deformation process. Mater. Sci. Eng. A, 2016, 664, 247.

[50]

Edalati K, Imamura K, Kiss T, Horita Z. Equal-channel angular pressing and high-pressure torsion of pure copper: Evolution of electrical conductivity and hardness with strain. Mater. Trans., 2012, 53(1): 123.

[51]

Jamali SS, Faraji G, Abrinia K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. Int. J. Adv. Manuf. Technol., 2017, 88(1–4): 291.

[52]

Raab GI, Soshnikova EP, Valiev RZ. Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Mater. Sci. Eng. A, 2004, 387–389, 674.

[53]

Hakamada M, Nakamoto Y, Matsumoto H, Iwasaki H, Chen YQ, Kusuda H, Mabuchi M. Relationship between hardness and grain size in electrodeposited copper films. Mater. Sci. Eng. A, 2007, 457(1–2): 120.

[54]

Azimi A, Tutunchilar S, Faraji G, Besharati Givi MK. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy. Mater. Des., 2012, 42, 388.

[55]

Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci., 2009, 54(4): 427.

[56]

Kim WJ, An CW, Kim YS, Hong SI. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing. Scripta Mater., 2002, 47(1): 39.

[57]

Jafarzadeh H, Abrinia K. Fabrication of ultra-fine grained aluminium tubes by RTES technique. Mater. Charact., 2015, 102, 1.

[58]

Shaarbaf M, Toroghinejad MR. Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A, 2008, 473(1–2): 28.

[59]

Deng J, Lin YC, Li SS, Chen J, Ding Y. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des., 2013, 49, 209.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/