Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite
Runpeng Liao , Shuming Wen , Qicheng Feng , Jiushuai Deng , Hao Lai
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (2) : 271 -282.
Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work. Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca2+ system, whereas arsenopyrite was almost unaffected. In mineral mixtures tests, the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%. After ammonium oxalate and ethyl xanthate treatment, the hydrophobicity of pyrite increased significantly, and the contact angle increased from 66.62° to 75.15° and then to 81.21°. After ammonium oxalate treatment, the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface. Zeta potential measurements showed that after activation by ammonium oxalate, there was a shift in the zeta potential of pyrite to more negative values by adding xanthate. X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment, the O 1s content on the surface of pyrite decreased from 44.03% to 26.18%, and the S 2p content increased from 14.01% to 27.26%, which confirmed that the ammonium oxalate-treated pyrite surface was more hydrophobic than the untreated surface. Therefore, ammonium oxalate may be used as a selective activator of pyrite in the lime system, which achieves an efficient flotation separation of S—As sulfide ores under high alkalinity and high Ca2+ concentration conditions.
pyrite / arsenopyrite / ammonium oxalate / flotation separation
| [1] |
B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532. |
| [2] |
X.F. Zheng, S.T. Cao, Z.Y. Nie, et al., Impact of mechanical activation on bioleaching of pyrite: A DFT study, Miner. Eng., 148(2020), art. No. 106209. |
| [3] |
P.M. Ferreira, D. Majuste, E.T.F. Freitas, et al., Galvanic effect of pyrite on arsenic release from arsenopyrite dissolution in oxygen-depleted and oxygen-saturated circumneutral solutions, J. Hazard. Mater., 412(2021), art. No. 125236. |
| [4] |
M. Zanin, H. Lambert, and C.A. du Plessis, Lime use and functionality in sulphide mineral flotation: A review, Miner. Eng., 143(2019), art. No. 105922. |
| [5] |
|
| [6] |
A.S. Stepanov, R.R. Large, E.S. Kiseeva, et al., Phase relations of arsenian pyrite and arsenopyrite, Ore Geol. Rev., 136(2021), art. No. 104285. |
| [7] |
|
| [8] |
|
| [9] |
S. Dzhamyarov, I. Grigorova, M. Ranchev, and I. Nishkov, Ammomiacal activation of lime depressed pyritea, [in] Proc. of XXIX International Mineral Processing Congress, Moscow, 2018. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
W.J. Zhao, M.L. Wang, B. Yang, Q.C. Feng, and D.W. Liu, Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper—ammonium species, Miner. Eng., 187(2022), art. No. 107796. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
M. Kartal, F. Xia, D. Ralph, et al., Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate(VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369. |
| [31] |
|
| [32] |
|
| [33] |
P. Forson, M. Zanin, W. Skinner, and R. Asamoah, Differential flotation of pyrite and arsenopyrite: Effect of hydrogen peroxide and collector type, Miner. Eng., 163(2021), art. No. 106808. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
/
| 〈 |
|
〉 |