Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation

Yi Liu , Jingnan Qin , Linlin Lu , Jie Xu , Xiaolei Su

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 525 -535.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 525 -535. DOI: 10.1007/s12613-022-2491-7
Article

Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation

Author information +
History +
PDF

Abstract

Porous carbon (PC) is a promising electromagnetic (EM) wave absorbing material thanks to its light weight, large specific surface area as well as good dissipating capacity. To further improve its microwave absorbing performance, silver coated porous carbon (Ag@PC) is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork. Phase compositions, morphological structure, and microwave absorption capability of the Ag@PC has been explored. Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork, which accelerates graphitization process of the amorphous carbon. The Ag@PC composite without adding polyvinyl pyrrolidone (PVP) exhibits higher dielectric constant and better EM wave dissipating capability. This is because the larger particles of Ag give rise to higher electric conductivity. After combing with frequency selective surface (FSS), the EM wave absorbing performance is further improved and the frequency region below −10 dB is located in 8.20–11.75 GHz, and the minimal reflection loss value is −22.5 dB. This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.

Keywords

biomass carbon / Ag@PC composite material / frequency selective surface / electromagnetic wave absorbing property

Cite this article

Download citation ▾
Yi Liu, Jingnan Qin, Linlin Lu, Jie Xu, Xiaolei Su. Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(3): 525-535 DOI:10.1007/s12613-022-2491-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao MS, Cai YZ, He P, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J., 2019, 359, 1265.

[2]

L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−05x Cr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993.

[3]

Cao X, Jia ZR, Hu D, Wu GL. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid Mater., 2022, 5, 1030.

[4]

Tang JH, Ma L, Tian N, et al. Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites. Mater. Sci. Eng. B, 2014, 186, 26.

[5]

Long YZ, Li MM, Gu CZ, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci., 2011, 36(10): 1415.

[6]

Z.Z. Shen, J.H. Chen, B. Li, et al., Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815(2020), art. No. 152388.

[7]

Sun CH, Jia ZR, Xu S, et al. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol., 2022, 113, 128.

[8]

T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919.

[9]

Liu Y, Liu XH, E XY, et al. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol., 2022, 103, 157.

[10]

H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24.

[11]

Huang XM, Liu XH, Jia ZR, et al. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater., 2021, 4(4): 1398.

[12]

Wang CX, Jia ZR, He SQ, et al. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J. Mater. Sci. Technol., 2022, 108, 236.

[13]

Cheng Y, Zhao HQ, Zhao Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon, 2020, 161, 870.

[14]

D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides, Nanotechnology, 30(2019), No. 44, art. No. 445708.

[15]

Zhang XY, Jia ZR, Zhang F, et al. MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci., 2022, 610, 610.

[16]

Gao SS, An QD, Xiao ZY, Zhai SR, Shi Z. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv., 2018, 8(34): 19011.

[17]

Xi JB, Zhou EZ, Liu YJ, et al. Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124, 492.

[18]

Gong YN, Li DL, Luo CZ, Fu Q, Pan CX. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem., 2017, 19(17): 4132.

[19]

Rong J, Qiu FX, Zhang T, et al. A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption. Chem. Eng. J., 2017, 322, 397.

[20]

Lv WM, Wen FS, Xiang JY, et al. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta, 2015, 176, 533.

[21]

Li Y, Meng Q, Ma J, et al. Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces, 2015, 7(21): 11146.

[22]

Zhang X, Cai L, Xiang Z, Lu W. Hollow CuS micro-flowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions. Carbon, 2021, 184, 514.

[23]

Wang HG, Meng FB, Li JY, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng., 2018, 6(9): 11801.

[24]

Wang LX, Guan YK, Qiu X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework. Chem. Eng. J., 2017, 326, 945.

[25]

C. Ji, Y. Liu, J. Xu, et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree, J. Alloys Compd., 890(2021), art. No. 161834.

[26]

Zhao HM, Fu ZB, Chen HB, Zhong M, Wang CY. Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces, 2016, 8(2): 1468.

[27]

Fang JY, Shang YS, Chen Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C, 2017, 5(19): 4695.

[28]

Cheng Y, Zhao HQ, Yang ZH, et al. An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J. Alloys Compd., 2018, 762, 463.

[29]

Huang L, Li JJ, Wang ZJ, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon, 2019, 143, 507.

[30]

Wei B, Zhou JT, Yao ZJ, et al. The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC. Ceram. Int., 2020, 46(5): 5788.

[31]

B.H. Xia, X.H. Zhang, J. Jiang, et al., Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding, Compos. Commun., 29(2022), art. No. 101028.

[32]

Y. Liu, J. Yang, J. Xu, L.L. Lu, and X.L. Su, Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/acrylic acid resin composite coatings with FSS incorporation, J. Alloys Compd., 899(2022), art. No. 163327.

[33]

Sevilla M, Fuertes AB. Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44(3): 468.

[34]

Qiu X, Wang LX, Zhu HL, Guan YK, Zhang QT. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 2017, 9(22): 7408.

[35]

Liu PB, Zhu CY, Gao S, et al. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon, 2020, 163, 348.

[36]

Sun X, He JP, Li GX, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 2013, 1(4): 765.

[37]

Xing WJ, Li P, Wang H, et al. The similar Cole-Cole semicircles and microwave absorption of Hexagonal Co/C composites. J. Alloys Compd., 2018, 750, 917.

[38]

Shi YN, Gao XH, Qiu J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam. Ceram. Int., 2019, 45(3): 3126.

[39]

Z. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571.

[40]

Wang Y, Gao X, Fu YQ, et al. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. B Eng., 2019, 169, 221.

[41]

Wang F, Gu WH, Chen JB, et al. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res., 2022, 15(4): 3720.

[42]

Wang F, Gu WH, Chen JB, et al. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol., 2022, 105, 92.

[43]

Liu TT, Cao MQ, Fang YS, Zhu YH, Cao MS. Green building materials lit up by electromagnetic absorption function: A review. J. Mater. Sci. Technol., 2022, 112, 329.

[44]

Wang XX, Zhang M, Shu JC, et al. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon, 2021, 184, 136.

[45]

Y. Liu, J.N. Qin, H.H. Shi, et al., Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation, Diam. Relat. Mater., 126(2022), art. No. 108996.

[46]

Chen JB, Zheng J, Wang F, Huang QQ, Ji GB. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon, 2021, 174, 509.

[47]

Cui XQ, Liang XH, Chen JB, et al. Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon, 2020, 156, 49.

[48]

L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/