Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics

Shuai Zhang , Yanling Zhang , Shaowen Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1207 -1216.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (6) : 1207 -1216. DOI: 10.1007/s12613-022-2489-1
Article

Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics

Author information +
History +
PDF

Abstract

Augite-based glass ceramics were synthesised using ZnO, FeO, and Fe2O3 as additives, and the spinel formation, matrix structure, crystallisation thermodynamics, and physicochemical properties were investigated. The results showed that oxides resulted in numerous preliminary spinels in the glass matrix. FeO, ZnO, and Fe2O3 influenced the formation of spinel, while FeO simplified the glass network. FeO and ZnO promoted bulk crystallisation of the parent glass. After adding oxides, the grains of augite phase were refined, and the relative quantities of augite crystal planes were also influenced. All samples displayed good mechanical properties and chemical stability. The 2wt% ZnO-doping sample displayed the maximum flexural strength (170.3 MPa). Chromium leaching amount values of all the samples were less than the national standard (1.5 mg/L), confirming the safety of the materials. In conclusion, an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.

Keywords

spinel / network structure / thermodynamics / microstructure / glass ceramics

Cite this article

Download citation ▾
Shuai Zhang, Yanling Zhang, Shaowen Wu. Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(6): 1207-1216 DOI:10.1007/s12613-022-2489-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DeCeanne AV, Rodrigues LR, Wilkinson CJ, Wilkinson JC, Wilkinson ED. Examining the role of nucleating agents within glass-ceramic systems. J. Non-Cryst. Solids., 2022, 591, 121714.

[2]

He D, Ma H, Zhong H. Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics. J. Eur. Ceram. Soc., 2021, 41(16): 342.

[3]

Zhong J, Zhang J, Yu Y, Bai H, Zhang Z, Huang Y. Transparent MgO—Al2O3—SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents. J. Non-Cryst. Solids., 2022, 588, 121585.

[4]

Luo Z, Liang H, Qin C, Liu T, Liu A. Crystallization kinetics and phase formation of Li2O-SiO2-Si3N4 glass-ceramics with P2O5 nucleating agent. J. Alloys Compd., 2022, 786, 688.

[5]

Wang C, Jia H, Wang A, Wang X, Guo Y, Zhang J. Effect of TiO2 on the crystallization and properties of MgO—Al2O3—SiO2 glass-ceramics prepared by an “one-step” method from laterite ore. Ceram. Int., 2019, 45(4): 5133.

[6]

Deng L, Jia R, Yun F, Zhang X, Li H, Zhang M, Jia X, Ren D, Li B. Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag. Mater. Chem. Phys., 2020, 240, 122212.

[7]

Shi Y, Song XW, Han XX. Catalytic mechanism of iron oxide doping on the crystallization process of Cr2O3-containg glass ceramics. J. Non Cryst. Solids., 2021, 570, 121002.

[8]

Back GS, Yoon MJ, Jung WG. Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2—Al2O3—CaO—MgO glass-ceramic system. Met. Mater. Int., 2017, 23, 798.

[9]

Khater GA. Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag. Ceram. Int., 2011, 37(7): 2193.

[10]

Zhang S, Zhang YL, Qu ZM. Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO—MgO—SiO2—(Na2O) glass ceramics with different CaO/MgO ratio. Ceram. Int., 2019, 45(9): 11216.

[11]

Shi Y, Li BW, Zhao M, Zhang MX. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent. J. Am. Ceram. Soc., 2018, 101(9): 3968.

[12]

Zhang S, Zhang YL, Gao JT, Qu ZM, Zhang Z. Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics. J. Eur. Ceram. Soc., 2019, 39(14): 4283.

[13]

M.C. Kemei, P.T. Barton, S.L. Moffitt, et al., Crystal structures of spin-Jahn—Teller-ordered MgCr2O4 and ZnCr2O4, J. Phys.: Condens. Matter, 25(2013), No. 32, art. No. 326001.

[14]

Robbins M, Wertheim GK, Sherwood RC, Buchanan DNE. Magnetic properties and site distributions in the system ${\rm{FeC}}{{\rm{r}}_2}{{\rm{O}}_4} - {\rm{F}}{{\rm{e}}_3}{{\rm{O}}_4}({\rm{F}}{{\rm{e}}^{2 + }}{\rm{C}}{{\rm{r}}_{2 - x}}{\rm{Fe}}_x^{3 + }{{\rm{O}}_4})$. J. Phys. Chem. Solids, 1971, 32(3): 717.

[15]

Zhao MZ, Cao JW, Wang Z, Li GH. Precipitating spinel into precursor glass and its assistance in crystallization. J. Eur. Ceram. Soc., 2019, 39(7): 2427.

[16]

Li JL, Xu AJ, He DF, Yang QX, Tian NY. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO—SiO2—MgO—Al2O3—Cr2O3 system. Int. J. Miner. Metall. Mater., 2013, 20(3): 253.

[17]

Wu T, Zhang Y, Yuan F, An Z. Effects of the Cr2O3 content on the viscosity of CaO—SiO2—10 Pct Al2O3—Cr2O3 quaternary slag. Metall. Mater. Trans. B., 2018, 49, 1719.

[18]

Li Q, Gao J, Zhang Y, An Z, Guo Z. Viscosity measurement and structure analysis of Cr2O3-bearing CaO—SiO2—MgO—Al2O3 slags. Metall. Mater. Trans. B., 2017, 48, 346.

[19]

Li Q, Yang S, Zhang Y, An Z, Guo Z. Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO—SiO2—Al2O3 slags. ISIJ. Int., 2017, 57(4): 689.

[20]

Zhang S, Zhang Y, Wu S, Zhao Z, Wu Y. Long-term leaching mechanism of chromium-containing slag after vitrification and heat treatment. Ceram. Int., 2022, 48(9): 13366.

[21]

Yuan F, Yuan Z, Zhang Y, Wu T. Effect of Al2O3 content on the viscosity and structure of CaO—SiO2—Cr2O3—Al2O3 slags. Int. J. Miner. Metall. Mater., 2022, 29(8): 1522.

[22]

Lee YS, Min DJ, Jung SM, Yi SH. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1283.

[23]

Wang ZW, Lazor P, Saxena SK, Artioli G. High-pressure Raman spectroscopic study of spinel (ZnCr2O4). J. Solid State Chem., 2002, 165(1): 165.

[24]

Yong WJ, Botis S, Shieh SR, Shi WG, Withers AC. Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys. Earth Planet. Inter., 2012, 196–197, 75.

[25]

McCarty KF, Boehme DR. A Raman study of the systems Fe3−xCrxO4 and Fe2−xCrxO3. J. Solid State Chem., 1989, 79(1): 19.

[26]

Li W, Deng C, Chen Y, Wang X, Yu C, Ding J, Zhu H. Application of Cr3C2/C composite powders synthesized via molten-salt method in low-carbon MgO—C refractories. Ceram. Int., 2022, 48(11): 15227.

[27]

Yang J, Liu B, Zhang SG, Volinsky AA. Glass-ceramics one-step crystallization accomplished by building Ca2+ and Mg2+ fast diffusion layer around diopside crystal. J. Alloys Compd., 2016, 688, 709.

[28]

Saheb N, Lamara S, Lamara F, Hassan SF. Kinetics of α-cordierite formation from nano-oxide powders. Ceram. Int., 2022, 48(16): 23921.

[29]

Li Y, Cao D, Zhang Y, Jia X. Performance of a drymethod-epoxy modifier and a modified epoxy-asphalt mixture. Constr. Build. Mater., 2021, 266, 120229.

[30]

Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal., 1978, 13(2): 283.

[31]

Karamanov A, Pelino M. Crystallization phenomena in iron-rich glasses. J. Non Cryst. Solids, 2001, 281(1–3): 139.

[32]

Boudchicha MR, Rubio F, Achour S. Synthesis of glass ceramics from Kaolin and dolomite mixture. Int. J. Miner. Metall. Mater., 2017, 24(2): 194.

[33]

Liu HP, Huang XF, Ma LP, Chen DL, Shang ZB, Jiang M. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag. Int. J. Miner. Metall. Mater., 2017, 24(3): 316.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/