Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption
Xing Feng , Pengfei Yin , Limin Zhang , Xiyuan Sun , Jian Wang , Liang Zhao , Changfang Lu , Zhihua Gao , Yongxin Zhan
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (3) : 559 -569.
Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption
To deal with the growing electromagnetic hazards, herein a Co@CuFe2O4 absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical precipitation and annealing. The as-prepared composite possesses excellent interface polarization ability due to sufficient contact between CuFe2O4 NPs and flat Co, and this compressed Co lamella can also provide sufficient eddy current loss. Moreover, the dipole polarization, electron hopping/conduction, and structural scattering also contribute to the broadband microwave absorption of the composite. Thus, the minimum microwave reflection loss achieves −35.56 dB at 12.93 GHz for 1.8 mm thickness, and the broadest efficient absorption bandwidth can reach 6.74 GHz for a thinner thickness of 1.72 mm. The preparation method reported here can be referenced as a new-type route to manufacture electromagnetic absorbers with outstanding performance.
electromagnetic wave / absorption / ball-milling / cobalt / copper ferrite
| [1] |
J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 175. |
| [2] |
|
| [3] |
|
| [4] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812. |
| [5] |
Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677. |
| [6] |
|
| [7] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, p. art. No. 2103436. |
| [8] |
|
| [9] |
|
| [10] |
J.L. Liu, L.M. Zhang, D.Y. Zang, and H.J. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 45, art. No.2105018. |
| [11] |
|
| [12] |
X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
T.Q. Hou, Z.R. Jia, B.B. Wang, et al., Metal-organic framework-derived NiSe2−CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers, Chem. Eng. J., 422(2021), art. No.130079. |
| [17] |
|
| [18] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
L. Wang, M.Q. Huang, X.F. Yu, et al., MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber, Nanomicro Lett., 12(2020), No. 1, p. art. No. 150. |
| [23] |
P.F. Yin, L.M. Zhang, Y.T. Tang, and J.C. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation, J. Alloys Compd., 881(2021), art. No. 160556. |
| [24] |
Z.G. Gao, B.H. Xu, M.L. Ma, et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption, Composites Part B, 179(2019), art. No. 107417. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
H.Y. Wei, Z.P. Zhang, G. Hussain, L.S. Zhou, Q. Li, and K. (Ken) Ostrikov, Techniques to enhance magnetic permeability in microwave absorbing materials, Appl. Mater. Today, 19(2020), art. No. 100596. |
| [34] |
|
| [35] |
J.L. Liu, L.M. Zhang, and H.J. Wu, Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective, J. Phys. D, 54(2021), No. 20, p. art. No. 203001. |
| [36] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. |
| [37] |
|
| [38] |
|
| [39] |
J.L. Liu, L.M. Zhang, H.J. Wu, and D.Y. Zang, Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite, Chem. Eng. J., 411(2021), art. No. 128601. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. |
| [46] |
|
| [47] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. |
| [48] |
|
| [49] |
|
| [50] |
M. Qin, L.M. Zhang, and H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber, Appl. Surf. Sci., 515(2020), art. No. 146132. |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
L.P. Wu, K.M. Zhang, J.Y. Shi, et al., Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption, Composites Part B, 228(2022), art No. 109424. |
| [59] |
|
| [60] |
|
/
| 〈 |
|
〉 |