Mechano-electrochemical perspectives on flexible lithium-ion batteries
Na Li , Shuangquan Yang , Haosen Chen , Shuqiang Jiao , Weili Song
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1019 -1036.
Mechano-electrochemical perspectives on flexible lithium-ion batteries
With the advent of flexible/wearable electronic devices, flexible lithium-ion batteries (LIBs) have attracted significant attention as optimal power source candidates. Flexible LIBs with good flexibility, mechanical stability, and high energy density are still an enormous challenge. In recent years, many complex and diverse design methods for flexible LIBs have been reported. The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors. In this review, the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective. The recent progress in flexible LIB design is addressed concerning flexible material and configuration design. The mechanical and electrochemical evaluations of flexible LIBs are also summarized. Furthermore, mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed. Finally, the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective. The evaluation of flexible LIBs should be based on mechano-electrochemical processes. Reviews and perspectives are of great significance to the design and practicality of flexible LIBs, which is contributed to bridging the gap between laboratory exploration and practical applications.
flexible lithium-ion batteries / flexible materials / structural design / mechanical and electrochemical coupling
| [1] |
C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S.X. Dou, C. Renduchintala, and J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage, Nat. Commun., 7(2016), art. No. 13319. |
| [2] |
A.E. Ostfeld, A.M. Gaikwad, Y. Khan, and A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics, Sci. Rep., 6(2016), art. No. 26122. |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561. |
| [8] |
T. Tao, S.G. Lu, and Y. Chen, A review of advanced flexible lithium-ion batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1700375. |
| [9] |
Z.H. Fang, J. Wang, H.C. Wu, Q.Q. Li, S.S. Fan, and J.P. Wang, Progress and challenges of flexible lithium ion batteries, J. Power Sources, 454(2020), art. No. 227932. |
| [10] |
E. Foreman, W. Zakri, M.H. Sanatimoghaddam, A. Modjtahedi, S. Pathak, A.G. Kashkooli, N.G. Garafolo, and S. Farhad, A review of inactive materials and components of flexible lithiumion batteries, Adv. Sustainable Syst., 1(2017), No. 11, art. No. 1700061. |
| [11] |
|
| [12] |
|
| [13] |
J. Chang, Q.Y. Huang, Y. Gao, and Z.J. Zheng, Pathways of developing high-energy-density flexible lithium batteries, Adv. Mater., 33(2021), No. 46, art. No. 2170363. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
O. Nyamaa, D.H. Seo, J.S. Lee, H.M. Jeong, S.C. Huh, J.H. Yang, E. Dolgor, and J.P. Noh, High electrochemical performance silicon thin-film free-standing electrodes based on buckypaper for flexible lithium-ion batteries, Materials (Basel), 14(2021), No. 8, art. No. 2053. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949. |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
K. Amin, Q.H. Meng, A. Ahmad, M. Cheng, M. Zhang, L.J. Mao, K. Lu, and Z.X. Wei, A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries, Adv. Mater., 30(2018), No. 4, art. No. 1703868. |
| [27] |
|
| [28] |
|
| [29] |
W. Liu, J. Chen, Z. Chen, K. Liu, G.M. Zhou, Y.M. Sun, M.S. Song, Z.N. Bao, and Y. Cui, Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701076. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
H. Yim, S.H. Yu, S.H. Baek, Y.E. Sung, and J.W. Choi, Directly integrated all-solid-state flexible lithium batteries on polymer substrate, J. Power Sources, 455(2020), art. No. 227978. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Y.N. Xu, K. Wang, J.W. Han, C. Liu, Y.B. An, Q.H. Meng, C. Li, X. Zhang, X.Z. Sun, Y.S. Zhang, L.J. Mao, Z.X. Wei, and Y.W. Ma, Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon, Adv. Mater., 32(2020), No. 45, art. No. 2005531. |
| [40] |
Z.M. Song, X. Wang, C. Lv, Y.H. An, M.B. Liang, T. Ma, D. He, Y.J. Zheng, S.Q. Huang, H.Y. Yu, and H.Q. Jiang, Kirigami-based stretchable lithium-ion batteries, Sci. Rep., 5(2015), art. No. 10988. |
| [41] |
|
| [42] |
M. Park, H. Cha, Y. Lee, J. Hong, S.Y. Kim, and J. Cho, Post-patterned electrodes for flexible node-type lithium-ion batteries, Adv. Mater., 29(2017), No. 11, art. No. 1605773. |
| [43] |
F.W. Xiang, F. Cheng, Y.J. Sun, X.P. Yang, W. Lu, R. Amal, and L.M. Dai, Recent advances in flexible batteries: From materials to applications, Nano Res., 2021. DOI: https://doi.org/10.1007/s12274-021-3820-2. |
| [44] |
L.J. Mao, Q.H. Meng, A. Ahmad, and Z.X. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices, Adv. Energy Mater., 7(2017), No. 23, art. No. 1700535. |
| [45] |
D. Chen, Z. Lou, K. Jiang, and G.Z. Shen, Device configurations and future prospects of flexible/stretchable lithium-ion batteries, Adv. Funct. Mater., 28(2018), No. 51, art. No. 1805596. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
Y.F. Zhang, F.Z. Li, K. Yang, X. Liu, Y.G. Chen, Z.Q. Lao, K.C. Mai, and Z.S. Zhang, Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2100434. |
| [50] |
|
| [51] |
|
| [52] |
Y. Shi, L. Wen, G.M. Zhou, J. Chen, S.F. Pei, K. Huang, H.M. Cheng, and F. Li, Graphene-based integrated electrodes for flexible lithium ion batteries, 2D Mater., 2(2015), No. 2, art. No. 024004. |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y.W. Su, J. Su, H.G. Zhang, H.Y. Cheng, B.W. Lu, C.J. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y.G. Huang, U. Paik, and J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nat. Commun., 4(2013), art. No. 1543. |
| [57] |
H. An, J. Mike, K.A. Smith, L. Swank, Y.H. Lin, S.L. Pesek, R. Verduzco, and J.L. Lutkenhaus, Highly flexible self-assembled V2O5 cathodes enabled by conducting diblock copolymers, Sci. Rep., 5(2015), art. No. 14166. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
H. Cha, Y. Lee, J. Kim, M. Park, and J. Cho, Flexible 3D interlocking lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 30, art. No. 1801917. |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
Z.M. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H.Y. Yu, and H.Q. Jiang, Origami lithium-ion batteries, Nat. Commun., 5(2014), art. No. 3140. |
| [66] |
F.N. Mo, G.J. Liang, Z.D. Huang, H.F. Li, D.H. Wang, and C.Y. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater., 32(2020), No. 5, art. No. 1902151. |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
G.Y. Qian, B. Zhu, X.B. Liao, H.W. Zhai, A. Srinivasan, N.J. Fritz, Q. Cheng, M.Q. Ning, B.Y. Qie, Y. Li, S.L. Yuan, J. Zhu, X. Chen, and Y. Yang, Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density, Adv. Mater., 30(2018), No. 12, art. No. 1704947. |
| [71] |
X.B. Liao, C.M. Shi, T.Y. Wang, B.Y. Qie, Y.L. Chen, P.F. Yang, Q. Cheng, H.W. Zhai, M.J. Chen, X. Wang, X. Chen, and Y. Yang, High-energy-density foldable battery enabled by zigzag-like design, Adv. Energy Mater., 9(2019), No. 4, art. No. 1802998. |
| [72] |
N. Li, H.S. Chen, S.Q. Yang, H. Yang, S.Q. Jiao, and W.L. Song, Bidirectional planar flexible snake-origami batteries, Adv. Sci., 8(2021), No. 20, art. No. 2101372. |
| [73] |
|
| [74] |
L.B. Jiang, J.J. Zhao, and Y.W. Gao, Mechanical analysis of a flexible cable battery using the finite element model, AIP Adv., 9(2019), No. 1, art. No. 015013. |
| [75] |
C.J. Xu, L. Weng, B.B. Chen, L. Ji, J.Q. Zhou, R. Cai, and S.L. Lu, Modeling of the ratcheting behavior in flexible electrodes during cyclic deformation, J. Power Sources, 446(2020), art. No. 227353. |
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
/
| 〈 |
|
〉 |