Mechano-electrochemical perspectives on flexible lithium-ion batteries

Na Li , Shuangquan Yang , Haosen Chen , Shuqiang Jiao , Weili Song

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1019 -1036.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1019 -1036. DOI: 10.1007/s12613-022-2486-4
Invited Review

Mechano-electrochemical perspectives on flexible lithium-ion batteries

Author information +
History +
PDF

Abstract

With the advent of flexible/wearable electronic devices, flexible lithium-ion batteries (LIBs) have attracted significant attention as optimal power source candidates. Flexible LIBs with good flexibility, mechanical stability, and high energy density are still an enormous challenge. In recent years, many complex and diverse design methods for flexible LIBs have been reported. The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors. In this review, the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective. The recent progress in flexible LIB design is addressed concerning flexible material and configuration design. The mechanical and electrochemical evaluations of flexible LIBs are also summarized. Furthermore, mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed. Finally, the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective. The evaluation of flexible LIBs should be based on mechano-electrochemical processes. Reviews and perspectives are of great significance to the design and practicality of flexible LIBs, which is contributed to bridging the gap between laboratory exploration and practical applications.

Keywords

flexible lithium-ion batteries / flexible materials / structural design / mechanical and electrochemical coupling

Cite this article

Download citation ▾
Na Li, Shuangquan Yang, Haosen Chen, Shuqiang Jiao, Weili Song. Mechano-electrochemical perspectives on flexible lithium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 1019-1036 DOI:10.1007/s12613-022-2486-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S.X. Dou, C. Renduchintala, and J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage, Nat. Commun., 7(2016), art. No. 13319.

[2]

A.E. Ostfeld, A.M. Gaikwad, Y. Khan, and A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics, Sci. Rep., 6(2016), art. No. 26122.

[3]

Chen D, Pei QB. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev., 2017, 117(17): 11239.

[4]

Nishide H, Oyaizu K. Toward flexible batteries. Science, 2008, 319(5864): 737.

[5]

Zhao YF, Guo JC. Development of flexible Li-ion batteries for flexible electronics. InfoMat, 2020, 2(5): 866.

[6]

Wang LF, Geng MM, Ding XN, Fang C, Zhang Y, Shi SS, Zheng Y, Yang K, Zhan C, Wang XD. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538.

[7]

M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561.

[8]

T. Tao, S.G. Lu, and Y. Chen, A review of advanced flexible lithium-ion batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1700375.

[9]

Z.H. Fang, J. Wang, H.C. Wu, Q.Q. Li, S.S. Fan, and J.P. Wang, Progress and challenges of flexible lithium ion batteries, J. Power Sources, 454(2020), art. No. 227932.

[10]

E. Foreman, W. Zakri, M.H. Sanatimoghaddam, A. Modjtahedi, S. Pathak, A.G. Kashkooli, N.G. Garafolo, and S. Farhad, A review of inactive materials and components of flexible lithiumion batteries, Adv. Sustainable Syst., 1(2017), No. 11, art. No. 1700061.

[11]

Zhou GM, Li F, Cheng HM. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014, 7(4): 1307.

[12]

Hu YH, Sun XL. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A, 2014, 2(28): 10712.

[13]

J. Chang, Q.Y. Huang, Y. Gao, and Z.J. Zheng, Pathways of developing high-energy-density flexible lithium batteries, Adv. Mater., 33(2021), No. 46, art. No. 2170363.

[14]

Wang CY, Wallace GG. Flexible electrodes and electrolytes for energy storage. Electrochim. Acta, 2015, 175, 87.

[15]

Li Y, Wang RH, Guo ZN, Xiao Z, Wang HD, Luo XL, Zhang H. Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: Opportunities and challenges. J. Mater. Chem. A, 2019, 7(44): 25227.

[16]

Liu B, Zhang JG, Shen GZ. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11(1): 82.

[17]

O. Nyamaa, D.H. Seo, J.S. Lee, H.M. Jeong, S.C. Huh, J.H. Yang, E. Dolgor, and J.P. Noh, High electrochemical performance silicon thin-film free-standing electrodes based on buckypaper for flexible lithium-ion batteries, Materials (Basel), 14(2021), No. 8, art. No. 2053.

[18]

Gao Z, Song NN, Zhang YY, Li XD. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett., 2015, 15(12): 8194.

[19]

Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of highperformance flexible lithium-ion batteries. Nano Lett., 2012, 12(6): 3005.

[20]

Chen J, Wen L, Fang RP, Wang DW, Cheng HM, Li F. Stress release in high-capacity flexible lithium-ion batteries through nested wrinkle texturing of graphene. J. Energy Chem., 2021, 61, 243.

[21]

Rana K, Singh J, Lee JT, Park JH, Ahn JH. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces, 2014, 6(14): 11158.

[22]

R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949.

[23]

Fang X, Shen CF, Ge MY, Rong JP, Liu YH, Zhang AY, Wei F, Zhou CW. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy, 2015, 12, 43.

[24]

Meng CZ, Liu CH, Fan SS. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem. Commun., 2009, 11(1): 186.

[25]

Jia XL, Yan CZ, Chen Z, Wang RR, Zhang Q, Guo L, Wei F, Lu YF. Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun., 2011, 47(34): 9669.

[26]

K. Amin, Q.H. Meng, A. Ahmad, M. Cheng, M. Zhang, L.J. Mao, K. Lu, and Z.X. Wei, A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries, Adv. Mater., 30(2018), No. 4, art. No. 1703868.

[27]

Wan JY, Xie J, Kong X, Liu Z, Liu K, Shi FF, Pei A, Chen H, Chen W, Chen J, Zhang XK, Zong LQ, Wang JY, Chen LQ, Qin J, Cui Y. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol., 2019, 14(7): 705.

[28]

Choi KH, Cho SJ, Kim SH, Kwon YH, Kim JY, Lee SY. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater., 2014, 24(1): 44.

[29]

W. Liu, J. Chen, Z. Chen, K. Liu, G.M. Zhou, Y.M. Sun, M.S. Song, Z.N. Bao, and Y. Cui, Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701076.

[30]

Wang XD, Lu Y, Geng DS, Li L, Zhou D, Ye HY, Zhu YC, Wang RM. Planar fully stretchable lithium-ion batteries based on a lamellar conductive elastomer. ACS Appl. Mater. Interfaces, 2020, 12(48): 53774.

[31]

Kim SH, Choi KH, Cho SJ, Kil EH, Lee SY. Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J. Mater. Chem. A, 2013, 1(16): 4949.

[32]

Wang C, Li RJ, Chen P, Fu YS, Ma XY, Shen T, Zhou BJ, Chen K, Fu JJ, Bao XF, Yan WW, Yang Y. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A, 2021, 9(8): 4758.

[33]

H. Yim, S.H. Yu, S.H. Baek, Y.E. Sung, and J.W. Choi, Directly integrated all-solid-state flexible lithium batteries on polymer substrate, J. Power Sources, 455(2020), art. No. 227978.

[34]

Rao JY, Liu NS, Zhang Z, Su J, Li LY, Xiong L, Gao YH. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy, 2018, 51, 425.

[35]

Qian GY, Liao XB, Zhu YX, Pan F, Chen X, Yang Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett., 2019, 4(3): 690.

[36]

Koo M, Park KI, Lee SH, Suh M, Jeon DY, Choi JW, Kang K, Lee KJ. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett., 2012, 12(9): 4810.

[37]

Kwon YH, Woo SW, Jung HR, Yu HK, Kim K, Oh BH, Ahn S, Lee SY, Song SW, Cho J, Shin HC, Kim JY. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater., 2012, 24(38): 5192.

[38]

Lee SY, Choi KH, Choi WS, Kwon YH, Jung HR, Shin HC, Kim JY. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci., 2013, 6(8): 2414.

[39]

Y.N. Xu, K. Wang, J.W. Han, C. Liu, Y.B. An, Q.H. Meng, C. Li, X. Zhang, X.Z. Sun, Y.S. Zhang, L.J. Mao, Z.X. Wei, and Y.W. Ma, Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon, Adv. Mater., 32(2020), No. 45, art. No. 2005531.

[40]

Z.M. Song, X. Wang, C. Lv, Y.H. An, M.B. Liang, T. Ma, D. He, Y.J. Zheng, S.Q. Huang, H.Y. Yu, and H.Q. Jiang, Kirigami-based stretchable lithium-ion batteries, Sci. Rep., 5(2015), art. No. 10988.

[41]

Bao YH, Hong GQ, Chen Y, Chen J, Chen HS, Song WL, Fang DN. Customized kirigami electrodes for flexible and deformable lithium-ion batteries. ACS Appl. Mater. Interfaces, 2020, 12(1): 780.

[42]

M. Park, H. Cha, Y. Lee, J. Hong, S.Y. Kim, and J. Cho, Post-patterned electrodes for flexible node-type lithium-ion batteries, Adv. Mater., 29(2017), No. 11, art. No. 1605773.

[43]

F.W. Xiang, F. Cheng, Y.J. Sun, X.P. Yang, W. Lu, R. Amal, and L.M. Dai, Recent advances in flexible batteries: From materials to applications, Nano Res., 2021. DOI: https://doi.org/10.1007/s12274-021-3820-2.

[44]

L.J. Mao, Q.H. Meng, A. Ahmad, and Z.X. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices, Adv. Energy Mater., 7(2017), No. 23, art. No. 1700535.

[45]

D. Chen, Z. Lou, K. Jiang, and G.Z. Shen, Device configurations and future prospects of flexible/stretchable lithium-ion batteries, Adv. Funct. Mater., 28(2018), No. 51, art. No. 1805596.

[46]

Jeon H, Cho I, Jo H, Kim K, Ryou MH, Lee YM. Highly rough copper current collector: Improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries. RSC Adv., 2017, 7(57): 35681.

[47]

Zhang ZA, Li Q, Zhang K, Chen W, Lai YQ, Li J. Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium—sulfur batteries. J. Power Sources, 2015, 290, 159.

[48]

Kim SW, Cho KY. Current collectors for flexible lithium ion batteries: A review of materials. J. Electrochem. Sci. Technol, 2015, 6(1): 1.

[49]

Y.F. Zhang, F.Z. Li, K. Yang, X. Liu, Y.G. Chen, Z.Q. Lao, K.C. Mai, and Z.S. Zhang, Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2100434.

[50]

Shi HM, Wen GL, Nie Y, Zhang GH, Duan HG. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12(9): 5261.

[51]

Hu L, Wu H, Mantia FL, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843.

[52]

Y. Shi, L. Wen, G.M. Zhou, J. Chen, S.F. Pei, K. Huang, H.M. Cheng, and F. Li, Graphene-based integrated electrodes for flexible lithium ion batteries, 2D Mater., 2(2015), No. 2, art. No. 024004.

[53]

Bao YH, Liu Y, Kuang YD, Fang DN, Li T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Mater., 2020, 33, 55.

[54]

Park MH, Noh M, Lee S, Ko M, Chae S, Sim S, Choi S, Kim H, Nam H, Park S, Cho J. Flexible high-energy Li-ion batteries with fast-charging capability. Nano Lett., 2014, 14(7): 4083.

[55]

Fu GP, Soucek MD, Kyu T. Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane. Solid State Ionics, 2018, 320, 310.

[56]

S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y.W. Su, J. Su, H.G. Zhang, H.Y. Cheng, B.W. Lu, C.J. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y.G. Huang, U. Paik, and J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nat. Commun., 4(2013), art. No. 1543.

[57]

H. An, J. Mike, K.A. Smith, L. Swank, Y.H. Lin, S.L. Pesek, R. Verduzco, and J.L. Lutkenhaus, Highly flexible self-assembled V2O5 cathodes enabled by conducting diblock copolymers, Sci. Rep., 5(2015), art. No. 14166.

[58]

Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song JZ, Huang YY, Liu ZJ, Lu C, Rogers JA. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875): 507.

[59]

Luo HL, Zhu JE, Sahraei E, Xia Y. Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings. RSC Adv., 2018, 8(8): 3996.

[60]

Blake AJ, Kohlmeyer RR, Drummy LF, Gutiérrez-Kolar JS, Carpena-Núñez J, Maruyama B, Shahbazian-Yassar R, Huang H, Durstock MF. Creasable batteries: Understanding failure modes through dynamic electrochemical mechanical testing. ACS Appl. Mater. Interfaces, 2016, 8(8): 5196.

[61]

H. Cha, Y. Lee, J. Kim, M. Park, and J. Cho, Flexible 3D interlocking lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 30, art. No. 1801917.

[62]

He JQ, Lu CH, Jiang HB, Han F, Shi X, Wu JX, Wang LY, Chen TQ, Wang JJ, Zhang Y, Yang H, Zhang GQ, Sun XM, Wang BJ, Chen PN, Wang YG, Xia YY, Peng HS. Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597(7874): 57.

[63]

Shi CM, Wang TY, Liao XB, Qie BY, Yang PF, Chen MJ, Wang X, Srinivasan A, Cheng Q, Ye Q, Li AC, Chen X, Yang Y. Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Mater., 2019, 17, 136.

[64]

Weng W, Sun Q, Zhang Y, He SS, Wu QQ, Deng J, Fang X, Guan GZ, Ren J, Peng HS. A gum-like lithiumion battery based on a novel arched structure. Adv. Mater., 2015, 27(8): 1363.

[65]

Z.M. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H.Y. Yu, and H.Q. Jiang, Origami lithium-ion batteries, Nat. Commun., 5(2014), art. No. 3140.

[66]

F.N. Mo, G.J. Liang, Z.D. Huang, H.F. Li, D.H. Wang, and C.Y. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater., 32(2020), No. 5, art. No. 1902151.

[67]

Chen YS, Chang KH, Hu CC, Cheng TT. Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries. Electrochim. Acta, 2010, 55(22): 6433.

[68]

Zhang Y, Wang YH, Wang L, Lo CM, Zhao Y, Jiao YD, Zheng GF, Peng HS. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A, 2016, 4(23): 9002.

[69]

Ren J, Zhang Y, Bai WY, Chen XL, Zhang ZT, Fang X, Weng W, Wang YG, Peng HS. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed., 2014, 53(30): 7864.

[70]

G.Y. Qian, B. Zhu, X.B. Liao, H.W. Zhai, A. Srinivasan, N.J. Fritz, Q. Cheng, M.Q. Ning, B.Y. Qie, Y. Li, S.L. Yuan, J. Zhu, X. Chen, and Y. Yang, Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density, Adv. Mater., 30(2018), No. 12, art. No. 1704947.

[71]

X.B. Liao, C.M. Shi, T.Y. Wang, B.Y. Qie, Y.L. Chen, P.F. Yang, Q. Cheng, H.W. Zhai, M.J. Chen, X. Wang, X. Chen, and Y. Yang, High-energy-density foldable battery enabled by zigzag-like design, Adv. Energy Mater., 9(2019), No. 4, art. No. 1802998.

[72]

N. Li, H.S. Chen, S.Q. Yang, H. Yang, S.Q. Jiao, and W.L. Song, Bidirectional planar flexible snake-origami batteries, Adv. Sci., 8(2021), No. 20, art. No. 2101372.

[73]

Xu CJ, Weng L, Ji L, Zhou JQ. An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur. J. Mech. A/Solids, 2019, 73, 47.

[74]

L.B. Jiang, J.J. Zhao, and Y.W. Gao, Mechanical analysis of a flexible cable battery using the finite element model, AIP Adv., 9(2019), No. 1, art. No. 015013.

[75]

C.J. Xu, L. Weng, B.B. Chen, L. Ji, J.Q. Zhou, R. Cai, and S.L. Lu, Modeling of the ratcheting behavior in flexible electrodes during cyclic deformation, J. Power Sources, 446(2020), art. No. 227353.

[76]

Chen A, Guo X, Yang S, Liang GJ, Li Q, Chen Z, Huang ZD, Yang Q, Han CP, Zhi CY. Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: Achieving multiple deformabilities. Energy Environ. Sci., 2021, 14(6): 3599.

[77]

Qi DP, Liu ZY, Liu Y, Leow WR, Zhu BW, Yang H, Yu JC, Wang W, Wang H, Yin SY, Chen XD. Suspended wavy graphene microribbons for highly stretchable microsuper-capacitors. Adv. Mater., 2015, 27(37): 5559.

[78]

Li HF, Tang ZJ, Liu ZX, Zhi CY. Evaluating flexibility and wearability of flexible energy storage devices. Joule, 2019, 3(3): 613.

[79]

Tu JG, Song WL, Lei HP, Yu ZJ, Chen LL, Wang MY, Jiao SQ. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives. Chem. Rev., 2021, 121(8): 4903.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/