Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering
Lele Niu , Zhengjian Liu , Jianliang Zhang , Dawei Lan , Sida Li , Zhen Li , Yaozu Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (2) : 303 -313.
Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering
In order to study the sintering characteristics of Ca-rich iron ore, chemical analysis, laser diffraction, scanning electron microscopy, XRD-Rietveld method, and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior. In addition, a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents. The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite (CaCO3) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized. Its application with a 20wt% content in sintering improves sinter productivity, reduces fuel consumption, enhances reduction index, and improves gas permeability in blast furnace by 0.45 t/(m2·h), 6.11 kg/t, 6.17%, and 65.39 kPa·°C, respectively. The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering, which is conducive to recovering heat for secondary use. As the content of the Ca-rich iron ore increases, sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection. Based on an examination of the greater weight value of productivity with grey correlation analysis, the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0–20wt% content. Therefore, it may be used in sintering with magnetite concentrates as the major ore species.
calcium-rich iron ore / mineralogical properties / phase structure evolution / flue gas heat / grey relation analysis
| [1] |
World Steel Association, World Steel in Figures 2017 [2017-05-29]. https://worldsteel.org/zh-hans/steel-topics/siatistics/world-steel-in-figures/ |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Y.Z. Wang, Z.J. Liu, J.L. Zhang, Y.P. Zhang, L.L. Niu, and Q. Cheng, Study of stand-support sintering to achieve high oxygen potential in iron ore sintering to enhance productivity and reduce CO content in exhaust gas, J. Cleaner Prod., 252(2020), art. No. 119855. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
J. E, Y. Zeng, Y. Jin, et al., Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis, Energy, 211(2020), art. No. 118596. |
| [29] |
|
/
| 〈 |
|
〉 |