Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation

Huaifang Shang , Dingguo Xia

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 909 -916.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 909 -916. DOI: 10.1007/s12613-022-2482-8
Article

Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation

Author information +
History +
PDF

Abstract

The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries. The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources. Here, we report LiMn2O4 integrated with coating and doping by Sn self-segregation. Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn2O4, with a small Sn doping in the bulk phase. The integration strategy can not only mitigate the Jahn-Teller distortion but also effectively avoid the dissolution of manganese. The as-obtained product demonstrates superior high initial capacities of 124 mAh·g−1 and 120 mAh·g−1 with the capacity retention of 91.1% and 90.2% at 25°C and 55°C after 50 cycles, respectively. This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.

Keywords

spinel lithium manganate / coating and doping / tin self-segregation / high capacity / good stability

Cite this article

Download citation ▾
Huaifang Shang, Dingguo Xia. Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 909-916 DOI:10.1007/s12613-022-2482-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359.

[2]

M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561.

[3]

Wang LF, Geng MM, Ding XN, Fang C, Zhang Y, Shi SS, Zheng Y, Yang K, Zhan C, Wang XD. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538.

[4]

Du QK, Wu QX, Wang HX, Meng XJ, Ji ZK, Zhao S, Zhu WW, Liu C, Ling M, Liang CD. Carbon dot-modified silicon nanoparticles for lithium-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1603.

[5]

H.P. Yang, H.H. Wu, M.Y. Ge, L.J. Li, Y.F. Yuan, Q. Yao, J. Chen, L.F. Xia, J.M. Zheng, Z.Y. Chen, J.F. Duan, K. Kisslinger, X.C. Zeng, W.K. Lee, Q.B. Zhang, and J. Lu, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater., 29(2019), No. 13, art. No. 1808825.

[6]

Li LJ, Chen JX, Huang H, Tan L, Song LB, Wu HH, Wang C, Zhao ZX, Yi HL, Duan JF, Dong T. Role of residual Li and oxygen vacancies in Ni-rich cathode materials. ACS Appl. Mater. Interfaces, 2021, 13(36): 42554.

[7]

Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature, 2018, 559(7715): 467.

[8]

Freire M, Kosova NV, Jordy C, Chateigner D, Lebedev OI, Maignan A, Pralong V. A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater, 2016, 15(2): 173.

[9]

Lee J, Kitchaev DA, Kwon DH, Lee CW, Papp JK, Liu YS, Lun ZY, Clément RJ, Shi T, McCloskey BD, Guo JH, Balasubramanian M, Ceder G. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature, 2018, 556(7700): 185.

[10]

Nitta N, Wu FX, Lee JT, Yushin G. Li-ion battery materials: Present and future. Mater. Today, 2015, 18(5): 252.

[11]

Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv. Mater, 2009, 21(45): 4593.

[12]

Li F, He J, Liu JD, Wu MG, Hou YY, Wang HP, Qi SH, Liu QH, Hu JW, Ma JM. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed., 2021, 60(12): 6600.

[13]

Qi SH, Wang HP, He J, Liu JD, Cui CY, Wu MG, Li F, Feng YZ, Ma JM. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci. Bull., 2021, 66(7): 685.

[14]

D.P. Finegan, A. Vamvakeros, C. Tan, T.M.M. Heenan, S.R. Daemi, N. Seitzman, M.D. Michiel, S. Jacques, A.M. Beale, D.J.L. Brett, P.R. Shearing, and K. Smith, Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Nat. Commun., 11(2020), art. No. 631.

[15]

F.Y. Cheng, H.B. Wang, Z.Q. Zhu, Y. Wang, T.R. Zhang, Z.L. Tao, and J. Chen, Porous LiMn2O4 nanorods with durable highrate capability for rechargeable Li-ion batteries, Energy Environ. Sci., 4(2011), No. 9, art. No. 3668.

[16]

Zhou G, Sun XR, Li QH, Wang XL, Zhang JN, Yang WL, Yu XQ, Xiao RJ, Li H. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: In situ ultraviolet-visible spectroscopy and Ab initio molecular dynamics simulations. J. Phys. Chem. Lett., 2020, 11(8): 3051.

[17]

Sun YK, Yoon CS, Kim CK, Youn SG, Lee YS, Yoshio M, Oh IH. Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling. J. Mater. Chem., 2001, 11(10): 2519.

[18]

K.R. Ragavendran, P. Mandal, and S. Yarlagadda, Correlation between battery material performance and cooperative electronphonon interaction in LiCoyMn2−yO4, Appl. Phys. Lett., 110(2017), No. 14, art. No. 143901.

[19]

Lee S, Cho Y, Song HK, Lee KT, Cho J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed., 2012, 51(35): 8748.

[20]

Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng HL, Huggins RA, Cui Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett., 2008, 8(11): 3948.

[21]

Lee PA, Pendry JB. Theory of the extended X-ray absorption fine structure. Phys. Rev. B, 1975, 11(8): 2795.

[22]

Natoli CR, Benfatto M, Brouder C, López MFR, Foulis DL. Multichannel multiple-scattering theory with general potentials. Phys. Rev. B, 1990, 42(4): 1944.

[23]

Ankudinov AL, Ravel B, Rehr JJ, Conradson SD. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B, 1998, 58(12): 7565.

[24]

Tyson TA, Hodgson KO, Natoli CR, Benfatto M. General multiple-scattering scheme for the computation and interpretation of X-ray-absorption fine structure in atomic clusters with applications to SF6, GeCl4, and Br2 molecules. Phys. Rev. B, 1992, 46(10): 5997.

[25]

D.W. Shin, J.W. Choi, W.K. Choi, Y.S. Cho, and S.J. Yoon, Improved cycleability of LiMn2O4-based thin films by Sn substitution, Appl. Phys. Lett., 93(2008), No. 6, art. No. 064101.

[26]

Du FL, Guo ZY, Li GC. Hydrothermal synthesis of SnO2 hollow microspheres. Mater. Lett., 2005, 59(19–20): 2563.

[27]

Fang TT, Chung HY. Reassessment of the electronic-conduction behavior above the Verwey-like transition of Ni2+- and Al3+-doped LiMn2O4. J. Am. Ceram. Soc., 2008, 91(1): 342.

[28]

Choi WK, Jung HJ, Koh SK. Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition. J. Vac. Sci. Technol. A, 1996, 14(2): 359.

[29]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Crystallogr. Sect. A, 1976, 32(5): 751.

[30]

H.R. Taghiyari, K. Mobini, Y.S. Samadi, Z. Doosti, F. Karimi, M. Asghari, A. Jahangiri, and P. Nouri, Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard, J. Nanomater. Mol. Nanotechnol., 2(2013), No. 1, art. No. 1000106.

[31]

Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater., 2011, 21(2): 348.

[32]

Li PW, Luo SH, Wang JC, Wang X, Tian Y, Li H, Wang Q, Zhang YH, Liu X. Preparation and electrochemical properties of Al-F co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery. Int. J. Energy Res, 2021, 45(15): 21158.

[33]

C. Zhan, X.P. Qiu, J. Lu, and K. Amine, Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery, Adv. Mater. Interfaces, 3(2016), No. 11, art. No. 1500856.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/