Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance
Jiaxin Li , Hao Yuan , Wenjie Zhang , Ruijie Zhu , Zhengbo Jiao
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 1971 -1980.
Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance
A Z-scheme heterostructure of Mo, W co-doped BiVO4 (Mo,W:BVO/BiOCl@C) was fabricated by a simple solid solution drying and calcination (SSDC) method. The heterostructure was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), etc. Under visible light irradiation, Mo,W:BVO/BiOCl@C heterostructure exhibits excellent photoelectrochemical capability compared with other as-prepared samples. The photocurrent density and the incident photon-to-electron conversion efficiency (IPCE) are about 5.4 and 9.0 times higher than those of pure BiVO4, respectively. The enhancement of the photoelectrochemical performance can be attributed to the construct of Z-scheme system, which is deduced from the radical trapping experiments. The Mo,W:BVO/BiOCl@C Z-scheme heterojunction enhances the visible-light absorption and reduces the recombination rate of charge carriers. This work provides an effective strategy to construct Z-scheme photoelectrodes for the application of photoelectrochemical water splitting.
photoelectrochemical / bismuth vanadate / BiOCl / Z-scheme / carbon
| [1] |
J.W. Fu, J.G. Yu, C.J. Jiang, and B. Cheng, G−C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8(2018), No. 3, art. No. 1701503. |
| [2] |
|
| [3] |
L.R. Bao, S.H. Zhu, Y. Chen, et al., Anionic defects engineering of Co3O4 catalyst for toluene oxidation, Fuel, 314(2022), art. No. 122774. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
J.L. Li, Q.M. Wang, Y.J. Zhang, Y.Q. Liu, X.H. Liu, and Z.B. Jiao, Homogeneously mixed heterostructures of BiVO4/MoS2/RGO with improved photoelectrochemical performances, Solid State Sci., 104(2020), art. No. 106200. |
| [17] |
|
| [18] |
|
| [19] |
L.L. Gao, X.F. Long, S.Q. Wei, et al., Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation, Chem. Eng. J., 378(2019), art. No. 122193. |
| [20] |
|
| [21] |
|
| [22] |
X.M. Jia, Q.F. Han, H.Z. Liu, S.Z. Li, and H.P. Bi, A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−xBrx heterojunction with enhanced visible-light photocatalytic activity, Chem. Eng. J., 399(2020), art. No. 125701. |
| [23] |
Y.Y. Zhou, H.P. Wang, X.C. Liu, et al., An efficient strategy for selective oxidation of ammonia nitrogen into N2 over BiOCl photocatalyst, Appl. Catal. B, 294(2021), art. No. 120265. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
W.T. Lin, X. Yu, Y.H. Shen, et al., Carbon dots/BiOCl films with enhanced visible light photocatalytic performance, J. Nanopart. Res., 19(2017), No. 2, art. No. 56. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
P.M. Gangatharan, M.S. Maubane-Nkadimeng, and N.J. Coville, Building carbon structures inside hollow carbon spheres, Sci. Rep., 9(2019), art. No. 10642. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
L.W. Shan, J.C. Li, Z. Wu, et al., Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J., 436(2022), art. No. 131516. |
| [40] |
J.L. Li, J.X. Li, H. Yuan, W.J. Zhang, Z.B. Jiao, and S.Z. Xiu, Modification of BiVO4 with partially covered α-Fe2O3 spindles serving as hole-transport channels for significantly improved photoelectrochemical performance, Chem. Eng. J., 398(2020), art. No. 125662. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
P.F. Zhang, H.O. Liang, H. Liu, J. Bai, and C.P. Li, A novel Z-scheme BiOI/BiOCl nanofibers photocatalyst prepared by one-pot solvothermal with efficient visible-light-driven photocatalytic activity, Mater. Chem. Phys., 272(2021), art. No. 125031. |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
B.J. Jin, Y. Cho, Y. Zhang, et al., A “surface patching” strategy to achieve highly efficient solar water oxidation beyond surface passivation effect, Nano Energy, 66(2019), art. No. 104110. |
| [58] |
|
| [59] |
|
| [60] |
W.H. Liu, D.D. Liu, K. Wang, X.D. Yang, S.Q. Hu, and L.S. Hu, Fabrication of Z-scheme Ag3PO4/TiO2 heterostructures for enhancing visible photocatalytic activity, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 203. |
/
| 〈 |
|
〉 |