Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning

Hongtao Zhang , Huadong Fu , Yuheng Shen , Jianxin Xie

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1197 -1205.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1197 -1205. DOI: 10.1007/s12613-022-2479-3
Article

Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning

Author information +
History +
PDF

Abstract

It is difficult to rapidly design the process parameters of copper alloys by using the traditional trial-and-error method and simultaneously improve the conflicting mechanical and electrical properties. The purpose of this work is to develop a new type of Cu-Ni-Co-Si alloy saving scarce and expensive Co element, in which the Co content is less than half of the lower limit in ASTM standard C70350 alloy, while the properties are as the same level as C70350 alloy. Here we adopted a strategy combining Bayesian optimization machine learning and experimental iteration and quickly designed the secondary deformation-aging parameters (cold rolling deformation 90%, aging temperature 450°C, and aging time 1.25 h) of the new copper alloy with only 32 experiments (27 basic sample data acquisition experiments and 5 iteration experiments), which broke through the barrier of low efficiency and high cost of trial-and-error design of deformation-aging parameters in precipitation strengthened copper alloy. The experimental hardness, tensile strength, and electrical conductivity of the new copper alloy are HV (285 ± 4), (872 ± 3) MPa, and (44.2 ± 0.7)% IACS (international annealed copper standard), reaching the property level of the commercial lead frame C70350 alloy. This work provides a new idea for the rapid design of material process parameters and the simultaneous improvement of mechanical and electrical properties.

Keywords

copper alloy / process design / machine learning / Bayesian optimization / utility function

Cite this article

Download citation ▾
Hongtao Zhang, Huadong Fu, Yuheng Shen, Jianxin Xie. Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(6): 1197-1205 DOI:10.1007/s12613-022-2479-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Z, Xiao Z, Jiang YB, Lei Q, Xie JX. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity. Chin. J. of Nonferrous Met., 2019, 29(9): 2009

[2]

Jiang L, Fu HD, Wang CS, Li WD, Xie JX. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing. Metall. Mater. Trans. A, 2020, 51(1): 331.

[3]

Fu HD, Xu S, Li W, Xie JX, Zhao HB, Pan ZJ. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy. Mater. Sci. Eng. A, 2017, 700, 107.

[4]

Zhang HT, Jiang YB, Xie JX, Li YH, Yue LJ. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy. J. Alloys Compd., 2019, 773, 1121.

[5]

Zhao ZL, Li Z, Xiao Z, Ma MZ, Song KR. Dynamic recrystallization of Cu-Cr-Ni-Si-Co alloy during hot deformation. JOM, 2021, 73(8): 2274.

[6]

Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A, 2008, 483–484, 117.

[7]

Li J, Huang GJ, Mi XJ, Peng LJ, Xie HF, Kang YL. Relationship between the microstructure and properties of a peak aged Cu-Ni-Co-Si alloy. Mater. Sci. Technol., 2019, 35(5): 606.

[8]

Bhandari U, Zhang CY, Guo SM, Yang SZ. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. Int. J. Miner. Metall. Mater., 2020, 27(10): 1398.

[9]

Nong ZS, Wang HY, Zhu JC. First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure. Int. J. Miner. Metall. Mater., 2020, 27(10): 1405.

[10]

Materials, 2019, 12(18)

[11]

Huang JZ, Xiao Z, Dai J, Li Z, Jiang HY, Wang W, et al. Microstructure and properties of a novel Cu-Ni-Co-Si-Mg alloy with super-high strength and conductivity. Mater. Sci. Eng. A, 2019, 744, 754.

[12]

Zhao Z, Zhang Y, Tian BH, Jia YL, Liu Y, Song KX, et al. Co effects on Cu-Ni-Si alloys microstructure and physical properties. J. Alloys Compd., 2019, 797, 1327.

[13]

Holmström E, Lizárraga R, Linder D, Salmasi A, Wang W, Kaplan B, et al. High entropy alloys: Substituting for cobalt in cutting edge technology. Appl. Mater. Today, 2018, 12, 322.

[14]

W. Wang, Y. Wang, W.Z. Mu, J.H. Park, H. Kong, S. Sukenaga, et al., Inclusion engineering in Co-based duplex entropic alloys, Mater. Des., 210(2021), art. No. 110097.

[15]

Krishna SC, Srinath J, Jha AK, Pant B, Sharma SC, George KM. Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy. J. Mater. Eng. Perform., 2013, 22(7): 2115.

[16]

Crystals, 2018, 8(11)

[17]

J. Li, G.J. Huang, X.J. Mi, L.J. Peng, H.F. Xie, and Y.L. Kang, Microstructure evolution and properties of a quaternary Cu-Ni-Co-Si alloy with high strength and conductivity, Mater. Sci. Eng. A, 766(2019), art. No. 138390.

[18]

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547.

[19]

Suh C, Fare C, Warren JA, Pyzer-Knapp EO. Evolving the materials genome: How machine learning is fueling the next generation of materials discovery. Annu. Rev. Mater. Res., 2020, 50, 1.

[20]

Rickman JM, Lookman T, Kalinin SV. Materials informatics: From the atomic-level to the continuum. Acta Mater., 2019, 168, 473.

[21]

Su YJ, Fu HD, Bai Y, Jiang X, Xie JX. Progress in materials genome engineering in China. Acta Metall. Sinica, 2020, 56(10): 1313

[22]

Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018, 361(6400): 360.

[23]

Nat. Commun., 2019, 10(1)

[24]

J. Phys. Mater., 2019, 2(3)

[25]

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, Machine learning in materials informatics: Recent applications and prospects, npj Comput. Mater., 3(2017), art. No. 54.

[26]

Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73.

[27]

C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, and J.X. Xie, A property-oriented design strategy for high performance copper alloys via machine learning, npj Comput. Mater., 5(2019), art. No. 87.

[28]

Zhang HT, Fu HD, He XQ, Wang CS, Jiang L, Chen LQ, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater., 2020, 200, 803.

[29]

Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf., 2016, 12, 282

[30]

Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. J. Global Optim., 1998, 13(4): 455.

[31]

D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), art. No. 11241.

[32]

Xue DZ, Xue DQ, Yuan RH, Zhou YM, Balachandran PV, Ding XD, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater., 2017, 125, 532.

[33]

P.V. Balachandran, D.Z. Xue, J. Theiler, J. Hogden, and T. Lookman, Adaptive strategies for materials design using uncertainties, Sci. Rep., 6(2016), art. No. 19660.

[34]

Lookman T, Balachandran PV, Xue DZ, Hogden J, Theiler J. Statistical inference and adaptive design for materials discovery. Curr. Opin. Solid State Mater. Sci., 2017, 21(3): 121.

[35]

Wen C, Zhang Y, Wang CX, Xue DZ, Bai Y, Antonov S, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater., 2019, 170, 109.

[36]

Adv. Mater., 2018, 30(7)

[37]

Yuan RH, Xue DQ, Xue DZ, Zhou YM, Ding XD, Sun J, et al. The search for BaTiO3-based piezoelectrics with large piezoelectric coefficient using machine learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2019, 66(2): 394.

[38]

Gao JH, Liu YB, Wang Y, Hu XH, Yan WB, Ke XQ, et al. Designing high dielectric permittivity material in barium titanate. J. Phys. Chem. C, 2017, 121(24): 13106.

[39]

Deng ZH, Yin HQ, Jiang X, Zhang C, Zhang GF, Xu B, et al. Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy. Int. J. Miner. Metall. Mater., 2020, 27(3): 362.

[40]

H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118.

[41]

Balogh L, Ungár T, Zhao YH, Zhu YT, Horita Z, Xu C, et al. Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys. Acta Mater., 2008, 56(4): 809.

[42]

Gholami M, Vesely J, Altenberger I, Kuhn HA, Janecek M, Wollmann M, et al. Effects of microstructure on mechanical properties of CuNiSi alloys. J. Alloys Compd., 2017, 696, 201.

[43]

Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1953, 1(1): 22.

[44]

Orowan E. Fracture and strength of solids. Rep. Prog. Phys., 1949, 12(1): 185.

[45]

Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Mater., 1996, 44(11): 4611.

[46]

Lei Q, Li Z, Zhu AY, Qiu WT, Liang SQ. The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment. Mater. Charact., 2011, 62(9): 904.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/