MOF-derived molybdenum selenide on Ti3C2T x with superior capacitive performance for lithium-ion capacitors

Jianjian Zhong , Lu Qin , Jianling Li , Zhe Yang , Kai Yang , Mingjie Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1061 -1072.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1061 -1072. DOI: 10.1007/s12613-022-2469-5
Article

MOF-derived molybdenum selenide on Ti3C2T x with superior capacitive performance for lithium-ion capacitors

Author information +
History +
PDF

Abstract

Two-dimensional Ti3C2T x exhibits outstanding rate property and cycle performance in lithium-ion capacitors (LICs) due to its unique layered structure, excellent electronic conductivity, and high specific surface area. However, like graphene, Ti3C2T x restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces, leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material. Here, a transition metal selenide MoSe2 with a special three-stacked atomic layered structure, derived from metal—organic framework (MOF), is introduced into the Ti3C2T x structure through a solvo-thermal method. The synergic effects of rapid Li+ diffusion and pillaring effect from the MoSe2 and excellent conductivity from the Ti3C2T x sheets endow the material with excellent electrochemical reaction kinetics and capacity. The composite Ti3C2T x@MoSe2 material exhibits a high capacity over 300 mAh·g−1 at 150 mA·g−1 and excellent rate property with a specific capacity of 150 mAh·g−1 at 1500 mA·g−1. Additionally, the material shows a superior capacitive contribution of 86.0% at 2.0 mV·s−1 due to the fast electrochemical reactions. A Ti3C2T x@MoSe2//AC LIC device is also fabricated and exhibits stable cycle performance.

Keywords

two-dimensional titanium carbide / molybdenum selenide / solvothermal method / electrochemical kinetics

Cite this article

Download citation ▾
Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang, Mingjie Zhang. MOF-derived molybdenum selenide on Ti3C2T x with superior capacitive performance for lithium-ion capacitors. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 1061-1072 DOI:10.1007/s12613-022-2469-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang QB, Liu YC, Ji XB. Editorial for special issue on advanced materials for energy storage and conversion. Int. J. Miner. Metall. Mater., 2021, 28(10): 1545.

[2]

Liu LH, Li N, Han JR, Yao KL, Liang HY. Multicomponent transition metal phosphide for oxygen evolution. Int. J. Miner. Metall. Mater., 2022, 29(3): 503.

[3]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248.

[4]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater., 2014, 26(7): 992.

[5]

C.E. Shuck and Y. Gogotsi, Taking MXenes from the lab to commercial products, Chem. Eng. J., 401(2020), art. No. 125786.

[6]

M.R. Lukatskaya, S. Kota, Z.F. Lin, M.Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.L. Taberna, M.W. Barsoum, P. Simon, and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2(2017), art. No. 17105.

[7]

Tian YP, Yang CH, Que WX, Liu XB, Yin XT, Kong LB. Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources, 2017, 359, 332.

[8]

Li L, Zhang N, Zhang MY, Wu LL, Zhang XT, Zhang ZG. Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for super-capacitors. ACS Sustainable Chem. Eng., 2018, 6(6): 7442.

[9]

Byeon A, Glushenkov AM, Anasori B, Urbankowski P, Li JW, Byles BW, Blake B, Van Aken KL, Kota S, Pomerantseva E, Lee JW, Chen Y, Gogotsi Y. Lithium-ion capacitors with 2D Nb2CTx (MXene)—Carbon nanotube electrodes. J. Power Sources, 2016, 326, 686.

[10]

Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater., 2016, 28(7): 1517.

[11]

J.J. Shi, Y.X. Hou, Z.Y. Liu, Y.F. Zheng, L. Wen, J. Su, L.Y. Li, N.S. Liu, Z. Zhang, and Y.H. Gao, The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651.

[12]

Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustainable Chem. Eng., 2019, 7(18): 15394.

[13]

Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632.

[14]

Y.M. Wang, X. Wang, X.L. Li, R. Liu, Y. Bai, H.H. Xiao, Y. Liu, and G.H. Yuan, Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices, Nano-Micro Lett., 12(2020), No. 1, art. No. 115.

[15]

Zhao Q, Zhu QZ, Miao JW, Zhang P, Wan PB, He LZ, Xu B. Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small, 2019, 15(51): e1904293.

[16]

Shi MJ, Wang B, Chen C, Lang JW, Yan C, Yan XB. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A, 2020, 8(46): 24635.

[17]

X. Yang, Y.W. Yao, Q. Wang, K. Zhu, K. Ye, G.L. Wang, D.X. Cao, and J. Yan, 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life, Adv. Funct. Mater., 32(2022), No. 10, art. No. 2109479.

[18]

Wang ZL, Bai JR, Xu HY, Chen G, Kang SF, Li X. Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage. J. Colloid Interface Sci., 2020, 577, 329.

[19]

Y. Xia, L.F. Que, F.D. Yu, L. Deng, C. Liu, X.L. Sui, L. Zhao, and Z.B. Wang, Boosting ion/e transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors, Chem. Eng. J., 404(2021), art. No. 127116.

[20]

M.J. Shi, P. Xiao, J.W. Lang, C. Yan, and X.B. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid, Adv. Sci., 7(2020), No. 2, art. No. 1901975.

[21]

J.M. Luo, J.H. Zheng, J.W. Nai, C.B. Jin, H.D. Yuan, O.W. Sheng, Y.J. Liu, R.Y. Fang, W.K. Zhang, H. Huang, Y.P. Gan, Y. Xia, C. Liang, J. Zhang, W.Y. Li, and X.Y. Tao, Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultrafast sodium-ion storage by enhanced pseudocapacitance, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1808107.

[22]

Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 2017, 11(3): 2459.

[23]

O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716.

[24]

E.Z. Xu, P.C. Li, J.J. Quan, H.W. Zhu, L. Wang, Y.J. Chang, Z.J. Sun, L. Chen, D.B. Yu, and Y. Jiang, Dimensional gradient structure of CoSe2@CNTs—MXene anode assisted by ether for high-capacity, stable sodium storage, Nano-Micro Lett., 13(2021), No. 1, art. No. 40.

[25]

H.X. Chao, H.Q. Qin, M.D. Zhang, Y.C. Huang, L.F. Cao, H.L. Guo, K. Wang, X.L. Teng, J.K. Cheng, Y.K. Lu, H. Hu, and M.B. Wu, Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets, Adv. Funct. Mater., 31(2021), No. 16, art. No. 2007636.

[26]

B. Cao, H. Liu, X. Zhang, P. Zhang, Q.Z. Zhu, H.L. Du, L.L. Wang, R.P. Zhang, and B. Xu, MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 202.

[27]

Wang H, Wang XY, Wang L, Wang J, Jiang DL, Li GP, Zhang Y, Zhong HH, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J. Phys. Chem. C, 2015, 119(19): 10197.

[28]

Morales J, Santos J, Tirado JL. Electrochemical studies of lithium and sodium intercalation in MoSe2. Solid State Ionics, 1996, 83(1–2): 57.

[29]

Zou ZG, Wang Q, Yan J, Zhu K, Ye K, Wang GL, Cao DX. Versatile interfacial self-assembly of Ti3C2Tx MXene based composites with enhanced kinetics for superior lithium and sodium storage. ACS Nano, 2021, 15(7): 12140.

[30]

Wang ZX, Xu Z, Huang HC, Chu X, Xie YT, Xiong D, Yan C, Zhao HB, Zhang HT, Yang WQ. Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano, 2020, 14(4): 4916.

[31]

Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater., 2014, 24(1): 125.

[32]

Sagane F, Abe T, Ogumi Z. Li+-ion transfer through the interface between Li+-ion conductive ceramic electrolyte and Li+-ion-concentrated propylene carbonate solution. J. Phys. Chem. C, 2009, 113(46): 20135.

[33]

Wang Z, Chen T, Chen WX, Chang K, Ma L, Huang GC, Chen DY, Lee JY. CTAB-assisted synthesis of single-layer MoS2—graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A, 2013, 1(6): 2202.

[34]

Liu Y, Zhu MQ, Chen D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A, 2015, 3(22): 11857.

[35]

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7(5): 1597.

[36]

Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B, 1997, 101(39): 7717.

[37]

Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C, 2007, 111(40): 14925.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/