Influence of deformation on the corrosion behavior of LZ91 Mg—Li alloy

Xueqin Liu , Xuejian Wang , Enyu Guo , Zongning Chen , Huijun Kang , Tongmin Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 72 -81.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 72 -81. DOI: 10.1007/s12613-022-2466-8
Article

Influence of deformation on the corrosion behavior of LZ91 Mg—Li alloy

Author information +
History +
PDF

Abstract

The effect of rolling and forging on the microstructure and corrosion behavior of LZ91 alloy was investigated using an electron probe micro-analyzer, immersion and electrochemical tests. Results showed that the area fraction of the β-Li phase remained unchanged, and the grain size of the β-Li phase decreased after forging. The as-rolled forged alloy (FR-LZ91) exhibited the highest area fraction of the β-Li phase and the longest grains. The corrosion resistance of the forged LZ91 alloy increased due to grain refinement that prevented further corrosion during the immersion test. Among the experimental alloys, FR-LZ91 showed the highest resistance of corrosion film and charge transfer resistance values due to its protective film caused by the high area fraction of the β-Li phase.

Keywords

magnesium lithium alloy / deformation / electrochemical test / corrosion behavior

Cite this article

Download citation ▾
Xueqin Liu, Xuejian Wang, Enyu Guo, Zongning Chen, Huijun Kang, Tongmin Wang. Influence of deformation on the corrosion behavior of LZ91 Mg—Li alloy. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 72-81 DOI:10.1007/s12613-022-2466-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tao W, Zhang ML, Wu RZ. Effect of cerium on microstructure and mechanical properties of Mg—8Li—3Al alloy. J. Rare Earths, 2007, 25(Suppl.2): 194

[2]

Guo F, Jiang LY, Ma YL, et al. Strengthening a dual-phase Mg—Li alloy by strain-induced phase transformation at room temperature. Scripta. Mater., 2020, 179, 16.

[3]

Haferkamp H, Niemeyer M, Boehm R, Holzkamp U, Jaschik C, Kaese V. Development, processing and applications range of magnesium lithium alloys. Mater. Sci. Forum, 2000, 350–351, 31.

[4]

Metenier P, González-Doncel G, Ruano OA, Wolfenstine J, Sherby OD. Superplastic behavior of a fine-grained two-phase Mg—9wt.%Li alloy. Mater. Sci. Eng. A, 1990, 125(2): 195.

[5]

Yang Y, Chen X, Nie JF, et al. Achieving ultra-strong Magnesium—lithium alloys by low-strain rotary swaging. Mater. Res. Lett., 2021, 9(6): 255.

[6]

Hua ZM, Zha M, Meng ZY, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy. Mater. Res. Lett., 2022, 10(1): 21.

[7]

Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang, and J.F. Zhong, Effects of alloying elements on the microstructure and corrosion behavior of Mg—Li—Al—Y alloys, J. Alloys Compd., 834(2020), art. No. 154344.

[8]

Sha GY, Sun XG, Liu T, Zhu YH, Yu T. Effects of Sc addition and annealing treatment on the microstructure and mechanical properties of the as-rolled Mg—3Li alloy. J. Mater. Sci. Technol., 2011, 27(8): 753.

[9]

Takuda H, Matsusaka H, Kikuchi S, Kubota K. Tensile properties of a few Mg—Li—Zn alloy thin sheets. J. Mater. Sci., 2002, 37(1): 51.

[10]

Song YW, Shan DY, Chen RS, Han EH. Corrosion characterization of Mg—8Li alloy in NaCl solution. Corros. Sci., 2009, 51(5): 1087.

[11]

Koltygin AV, Bazhenov VE, Khasenova RS, Komissarov AA, Bazlov AI, Bautin VA. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int. J. Miner. Metall. Mater., 2019, 26(7): 858.

[12]

Zhao ZL, Li YH, Zhong YF, Liu YD. Corrosion performance of as-rolled Mg—8Li—xAl alloys. Int. J. Electrochem. Sci., 2019, 14, 6394.

[13]

Wan YM, Liu JW, Yuan RH, Dai MH, Liu PY. Research of bio-corrosion behavior on as-cast LZ91 alloy. Min. Metall. Eng., 2016, 36(1): 117

[14]

A. Bahmani, S. Arthanari, and K.S. Shin, Achieving a high corrosion resistant and high strength magnesium alloy using multi directional forging, J. Alloys Compd., 856(2021), art. No. 158077.

[15]

Cao FF, Deng KK, Nie KB, Kang JW, Niu HY. Microstructure and corrosion properties of Mg—4Zn—2Gd—0.5Ca alloy influenced by multidirectional forging. J. Alloys Compd., 2019, 770, 1208.

[16]

Cao FY, Shi ZM, Song GL, Liu M, Dargusch MS, Atrens A. Influence of hot rolling on the corrosion behavior of several Mg—X alloys. Corros. Sci., 2015, 90, 176.

[17]

Zhang C, Wu L, Huang GS, Wang GG, Jiang B, Pan FS. Microstructure and corrosion properties of Mg—0.5Zn—0.2Ca—0.2Ce alloy with different processing conditions. Rare Met., 2021, 40(7): 1924.

[18]

Abu Leil T, Hort N, Dietzel W, et al. Microstructure and corrosion behavior of Mg—Sn—Ca alloys after extrusion. Trans. Nonferrous Met. Soc. China, 2009, 19(1): 40.

[19]

Merson D, Vasiliev E, Markushev M, Vinogradov A. On the corrosion of ZK60 magnesium alloy after severe plastic deformation. Lett. Mater., 2017, 7(4): 421.

[20]

Siahsarani A, Samadpour F, Mortazavi MH, Faraji G. Microstructural, mechanical and corrosion properties of AZ91 magnesium alloy processed by a severe plastic deformation method of hydrostatic cyclic expansion extrusion. Met. Mater. Int., 2021, 27(8): 2933.

[21]

Mineta T, Sato H. Simultaneously improved mechanical properties and corrosion resistance of Mg—Li—Al alloy produced by severe plastic deformation. Mater. Sci. Eng. A, 2018, 735, 418.

[22]

Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater., 2015, 14(12): 1229.

[23]

Orlov D, Ralston KD, Birbilis N, Estrin Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater., 2011, 59(15): 6176.

[24]

Xiang Q, Jiang B, Zhang YX, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg—5Li—1Al alloy sheet. Corros. Sci., 2017, 119, 14.

[25]

ASTM International, ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2004.

[26]

Gao MQ, Chen ZN, Kang HJ, et al. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures. J. Mater. Sci. Technol., 2019, 35(8): 1523.

[27]

Wang JY. Mechanical properties of room temperature rolled MgLiAlZn alloy. J. Alloys Compd., 2009, 485(1–2): 241.

[28]

C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, and E.H. Han, Natural ageing responses of duplex structured Mg-Li based alloys, Sci. Rep., 7(2017), art. No. 40078.

[29]

Yamamoto A, Ashida T, Kouta Y, Kim K, Fukumoto S, Tsubakino H. Precipitation in Mg—(4-13)%Li—(4-5)%Zn ternary alloys. J. Jpn. Inst. Light. Met., 2001, 51(11): 604.

[30]

Ma LN, Yang Y, Zhou G, et al. et al., Effect of rolling reduction and annealing process on microstructure and corrosion behavior of LZ91 alloy sheet. Trans. Nonferrous Met. Soc. China, 2020, 30(7): 1816.

[31]

Y.H. Sun, R.C. Wang, C.Q. Peng, and X.F. Wang, Microstructure and corrosion behavior of as-homogenized Mg—xLi—3Al—2Zn—0.2Zr alloys (x = 5, 8, 11 wt%), Mater. Charact., 159(2020), art. No. 110031.

[32]

Wang BJ, Xu K, Xu DK, Cai X, Qiao YX, Sheng LY. Anisotropic corrosion behavior of hot-rolled Mg—8 wt.%Li alloy. J. Mater. Sci. Technol., 2020, 53, 102.

[33]

Jabbarzare S, Bakhsheshi-Rad HR, Nourbakhsh AA, Ahmadi T, Berto F. Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocompoite. Int. J. Miner. Metall. Mater., 2022, 29(2): 305.

[34]

Shi ZM, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci., 2010, 52(2): 579.

[35]

Abidin NIZ, Atrens AD, Martin D, Atrens A. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corros. Sci., 2011, 53(11): 3542.

[36]

Zeng RC, Sun L, Zheng YF, Cui HZ, Han EH. Corrosion and characterisation of dual phase Mg—Li—Ca alloy in Hank’s solution: The influence of microstructural features. Corros. Sci., 2014, 79, 69.

[37]

Liu X, Xue JL, Liu SZ. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities. Mater. Des., 2018, 160, 138.

[38]

Wang BJ, Xu DK, Cai X, Qiao YX, Sheng LY. Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg—8 wt.%Li alloy. J. Magnes. Alloys, 2021, 9(2): 560.

[39]

P.P. Wu, G.L. Song, Y.X. Zhu, Z.L. Feng, and D.J. Zheng, The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles, Corros. Sci., 184(2021), art. No. 109410.

[40]

Liu Q, Cheng WL, Zhang H, Xu CX, Zhang JS. The role of Ca on the microstructure and corrosion behavior of Mg—8Sn—1Al—1Zn—Ca alloys. J. Alloys Compd., 2014, 590, 162.

[41]

Li CQ, He YB, Huang HP. Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg—Li alloys. J. Magnes. Alloys, 2021, 9(2): 569.

[42]

Yang HB, Wu L, Jiang B, et al. Discharge properties of Mg—Sn—Y alloys as anodes for Mg-air batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1705.

[43]

Tayyab KB, Farooq A, Alvi AA, Nadeem AB, Deen KM. Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. Int. J. Miner. Metall. Mater., 2021, 28(3): 440.

[44]

Wang JF, Li Y, Huang S, Zhou XE. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg—xSn alloys in 3.5wt.% NaCl solution. Appl. Surf. Sci., 2014, 317, 1143.

[45]

S. Tang, T.Z. Xin, W.Q. Xu, et al., The composition-dependent oxidation film formation in Mg—Li—Al alloys, Corros. Sci., 187(2021), art. No. 109508.

[46]

Li CQ, Xu DK, Zhang ZR, Han EH. Influence of the lithium content on the negative difference effect of Mg—Li alloys. J. Mater. Sci. Technol., 2020, 57, 138.

[47]

Song YW, Shan DY, Chen RS, Han EH. Investigation of surface oxide film on magnesium lithium alloy. J. Alloys Compd., 2009, 484(1–2): 585.

[48]

Yang LH, Jiang QT, Zheng M, Hou BR, Li YT. Corrosion behavior of Mg—8Li—3Zn—Al alloy in neutral 3.5% NaCl solution. J. Magnes. Alloys, 2016, 4(1): 22.

[49]

Ding ZY, Cui LY, Zeng RC, et al. Exfoliation corrosion of extruded Mg—Li—Ca alloy. J. Mater. Sci. Technol., 2018, 34(9): 1550.

[50]

Dhamodharan D, Bhagat Singh P, Kumaran S. Effect of grain size and secondary particle refinement on corrosion behavior of cross-rolled Mg—Li—Ca alloy. Trans. Indian Inst. Met., 2019, 72(6): 1631.

[51]

Dobkowska A, Adamczyk-Cieślak B, Kubásek J, et al. Microstructure and corrosion resistance of a duplex structured Mg—7.5Li—3Al—1Zn. J. Magnes. Alloys, 2021, 9(2): 467.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/