Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B

Jinxiao Yang , Xudong Wang , Yiren Cai , Xiuyu Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 653 -659.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (4) : 653 -659. DOI: 10.1007/s12613-022-2463-y
Article

Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B

Author information +
History +
PDF

Abstract

A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate. The coating composition and morphology were examined. The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles. The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Compared with AZ31B magnesium alloy, the corrosion current density of the conversion coating is decreased by two orders of magnitude. The total impedance of the V/Ce conversion coating rise to 1.6 × 103 Ω·cm2 in contrast with 2.2 × 102 Ω·cm2 of the bare AZ31B. In addition, the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement. The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.

Keywords

AZ31B magnesium alloy / conversion coating / conductivity / corrosion resistance

Cite this article

Download citation ▾
Jinxiao Yang, Xudong Wang, Yiren Cai, Xiuyu Yang. Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(4): 653-659 DOI:10.1007/s12613-022-2463-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu TC, Yang Y, Peng XD, Song JF, Pan FS. Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloys, 2019, 7(3): 536.

[2]

Badisha V, Shaik S, Dumpala R, Sunil BR. Developing Mg-Zn surface alloy by friction surface allosying: in vitro degradation studies in simulated body fluids. Int. J. Miner. Metall. Mater., 2020, 27(7): 962.

[3]

Su JL, Teng J, Xu ZL, Li Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Metall. Mater., 2020, 27(6): 724.

[4]

G.Z. Zhang, S.Y. Qin, L.G. Yan, and X.F. Zhang, Simultaneous improvement of electromagnetic shielding effectiveness and corrosion resistance in magnesium alloys by electropulsing, Mater. Charact., 174(2021), art. No. 111042.

[5]

Tarzanagh YJ, Seifzadeh D, Samadianfard R. Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol—gel coating for active corrosion protection of the magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(3): 536.

[6]

Razzaghi M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, Ghayour H. In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications. Int. J. Miner. Metall. Mater., 2021, 28(1): 168.

[7]

Prasad MS, Ashfaq M, Babu NK, Sreekanth A, Sivaprasad K, Muthupandi V. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process. Int. J. Miner. Metall. Mater., 2017, 24(5): 566.

[8]

Ahangari M, Johar MH, Saremi M. Hydroxyapatitecarboxymethyl cellulose-graphene composite coating development on AZ31 magnesium alloy: Corrosion behavior and mechanical properties. Ceram. Int., 2021, 47(3): 3529.

[9]

Wang YL, Zhu YH, Li C, et al. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy. Appl. Surf. Sci., 2016, 369, 384.

[10]

Tencer M. Electrical conductivity of chromate conversion coating on electrodeposited zinc. Appl. Surf. Sci., 2006, 252(23): 8229.

[11]

Glor M. Electrostatic ignition hazards in the process industry. J. Electrost., 2005, 63(6–10): 447.

[12]

Cheong WJ, Luan BL, Shoesmith DW. Protective coating on Mg AZ91D alloy — The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni-P deposit. Corros. Sci., 2007, 49(4): 1777.

[13]

Liu ZM, Gao W. Electroless nickel plating on AZ91 Mg alloy substrate. Surf. Coat. Technol., 2006, 200(16–17): 5087.

[14]

Wu GS, Zeng XQ, Yuan GY. Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy. Mater. Lett., 2008, 62(28): 4325.

[15]

Guo XH, Du KQ, Guo QZ, Wang Y, Wang FH. Experimental study of corrosion protection of a three-layer film on AZ31B Mg alloy. Corros. Sci., 2012, 65, 367.

[16]

Jian SY, Chu YR, Lin CS. Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corros. Sci., 2015, 93, 301.

[17]

Duan GQ, Yang LX, Liao SJ, et al. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corros. Sci., 2018, 135, 197.

[18]

Zhu W, Li WF, Mu SL, Fu NQ, Liao ZM. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties. Appl. Surf. Sci., 2017, 405, 157.

[19]

Zai W, Su YC, Man HC, Lian JS, Li GY. Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy. Appl. Surf. Sci., 2019, 492, 314.

[20]

Hung SM, Lin H, Chen HW, Chen SY, Lin CS. Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg-Li alloy. J. Mater. Res. Technol., 2021, 11, 1953.

[21]

Fattah-alhosseini A, Joni MS. Investigation of the passive behaviour of AZ31B alloy in alkaline solutions. J. Magnes. Alloys, 2014, 2(2): 175.

[22]

Zhang DF, Qi ZB, Wei BB, Wu ZT, Wang ZC. Anti-corrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering. Surf. Coat. Technol., 2017, 309, 12.

[23]

C.Y. Li, X.L. Fan, L.Y. Cui, and R.C. Zeng, Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31, Corros. Sci., 168(2020), art. No. 108570.

[24]

Mu SL, Du J, Jiang H, Li WF. Composition analysis and corrosion performance of a Mo-Ce conversion coating on AZ91 magnesium alloy. Surf. Coat. Technol., 2014, 254, 364.

[25]

S.Y. Jian, Y.C. Tzeng, M.D. Ger, et al., The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium, Mater. Des., 192(2020), art. No. 108707.

[26]

Kogut L, Komvopoulos K. Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. J. Appl. Phys., 2004, 95(2): 576.

[27]

Ureña-Begara F, Crunteanu A, Raskin JP. Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci., 2017, 403, 717.

[28]

Silversmit G, Depla D, Poelman H, Marin GB, de Gryse R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom., 2004, 135(2–3): 167.

[29]

Zhou YH, Zhou J. Ti/CeOx(111) interfaces studied by XPS and STM. Surf. Sci., 2012, 606(7–8): 749.

[30]

J.J. Guo, X.F. Liu, K.Q. Du, et al., An anti-stripping and self-healing micro-arc oxidation/acrylamide gel composite coating on magnesium alloy AZ31, Mater. Lett., 260(2020), art. No. 126912.

[31]

Ardelean H, Frateur I, Marcus P. Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings. Corros. Sci., 2008, 50(7): 1907.

[32]

Gao FY, Tang XL, Yi HH, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J., 2017, 317, 20.

[33]

C. Ubeda, G. Garces, P. Adeva, I. Llorente, G.S. Frankel, and S. Fajardo, The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys, Corros. Sci., 165(2020), art. No. 108384.

[34]

Correa PS, Malfatti CF, Azambuja DS. Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions. Prog. Org. Coat., 2011, 72(4): 739.

[35]

Liu YX, Liu Z, Xu AY, Liu XT. Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization. J. Magnes. Alloys, 2022, 10(5): 1368.

[36]

Fattah-alhosseini A, Soltani F, Shirsalimi F, Ezadi B, Attarzadeh N. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros. Sci., 2011, 53(10): 3186.

[37]

de Oliveira MCL, Pereira VSM, Correa OV, de Lima NB, Antunes RA. Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment. Corros. Sci., 2013, 69, 311.

[38]

Ezhilselvi V, Nithin J, Balaraju JN, Subramanian S. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf. Coat. Technol., 2016, 288, 221.

[39]

S. Roshan and A.A. Sarabi, Improved performance of Ti-based conversion coating in the presence of Ce/Co ions: Surface characterization, electrochemical and adhesion study, Surf. Coat. Technol., 410(2021), art. No. 126931.

[40]

Sánchez-Amaya JM, Blanco G, Garcia-Garcia FJ, Bethencourt M, Botana FJ. XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation. Surf. Coat. Technol., 2012, 213, 105.

[41]

Yu XW, Cao CN, Yao ZM, Zhou DR, Yin ZD. Study of double layer rare earth metal conversion coating on aluminum alloy LY12. Corros. Sci., 2001, 43(7): 1283.

[42]

Fiedler T, White N, Dahari M, Hooman K. On the electrical and thermal contact resistance of metal foam. Int. J. Heat Mass Transfer, 2014, 72, 565.

[43]

Wilson WE, Angadi SV, Jackson RL. Surface separation and contact resistance considering sinusoidal elastic-plastic multi-scale rough surface contact. Wear, 2010, 268(1–2): 190.

[44]

Qiu DK, Peng LF, Yi PY, Lai XM. A micro contact model for electrical contact resistance prediction between roughness surface and carbon fiber paper. Int. J. Mech. Sci., 2017, 124–125, 37.

[45]

S. Shenogin, L. Ferguson, and A.K. Roy, The effect of contact resistance on electrical conductivity in filled elastomer materials, Polymer, 198(2020), art. No. 122502.

[46]

Barczynski RJ, Murawski L. Mixed electronic-ionic conductivity in transition metal oxide glasses containing alkaline ions. J. Non Cryst. Solids, 2002, 307–310, 1055.

[47]

Dahiya S, Punia R, Singh A, Maan AS, Murugavel S. DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system. J. Am. Ceram. Soc., 2015, 98(9): 2776.

[48]

Vinke IC, Diepgrond J, Boukamp BA, de Vries KJ, Burggraaf AJ. Bulk and electrochemical properties of BiVO4. Solid State Ionics, 1992, 57(1–2): 83.

[49]

L. Adijanto, V.B. Padmanabhan, R. Küngas, R.J. Gorte, and J.M. Vohs, Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes, J. Mater. Chem., 22(2012), No. 22, art. No. 11396.

[50]

Liu M, Lv ZL, Cheng Y, Ji GF, Gong M. Structural, elastic and electronic properties of CeVO4 via first-principles calculations. Comput. Mater. Sci., 2013, 79, 811.

[51]

Mansour E, El-Egili K, El-Damrawi G. Mechanism of hopping conduction in new CeO2-B2O3 semiconducting glasses. Physica B, 2007, 389(2): 355.

[52]

El-Mallawany R, El-Sayed AH, El-Gawad MMHA. ESR and electrical conductivity studies of (TeO2)0.95(CeO2)0.05 semiconducting glasses. Mater. Chem. Phys., 1995, 41(2): 87.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/