Decoding lithium batteries through advanced in situ characterization techniques

Mei Yang , Ruyi Bi , Jiangyan Wang , Ranbo Yu , Dan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 965 -989.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 965 -989. DOI: 10.1007/s12613-022-2461-0
Invited Review

Decoding lithium batteries through advanced in situ characterization techniques

Author information +
History +
PDF

Abstract

Given the energy demands of the electromobility market, the energy density and safety of lithium batteries (LBs) need to be improved, whereas its cost needs to be decreased. For the enhanced performance and decreased cost, more suitable electrode and electrolyte materials should be developed based on the improved understanding of the degradation mechanisms and structure-performance correlation in the LB system. Thus, various in situ characterization technologies have been developed during the past decades, providing abundant guidelines on the design of electrode and electrolyte materials. Here we first review the progress of in situ characterization of LBs and emphasize the feature of the multi-model coupling of different characterization techniques. Then, we systematically discuss how in situ characterization technologies reveal the electrochemical processes and fundamental mechanisms of different electrode systems based on representative electrode materials and electrolyte components. Finally, we discuss the current challenges, future opportunities, and possible directions to promote in situ characterization technologies for further improvement of the battery performance.

Keywords

in situ / characterization techniques / multi-modal coupling / lithium batteries / electrochemical mechanism

Cite this article

Download citation ▾
Mei Yang, Ruyi Bi, Jiangyan Wang, Ranbo Yu, Dan Wang. Decoding lithium batteries through advanced in situ characterization techniques. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 965-989 DOI:10.1007/s12613-022-2461-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pomerantseva E, Bonaccorso F, Feng XL, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science, 2019, 366(6468): 969.

[2]

Gu ZY, Guo JZ, Zhao XX, et al. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat, 2021, 3(6): 694.

[3]

X.X. Luo, W.H. Li, H.J. Liang, et al., Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries, Angew. Chem. Int. Ed., 61(2022), No. 10, art. No. e202117661.

[4]

Yang J, Lin YH, Guo BS, et al. Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle. Int. J. Miner. Metall. Mater., 2021, 28(10): 1621.

[5]

Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol, 2017, 12(3): 194.

[6]

Salhabi EHM, Zhao JL, Wang JY, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem. Int. Ed., 2019, 58(27): 9078.

[7]

Jiang Q, Zhang WQ, Zhao JC, Rao P H, Mao JF. Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes. Int. J. Miner. Metall. Mater., 2021, 28(7): 1194.

[8]

Meng YF, Liang HJ, Zhao CD, et al. Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dualion battery. J. Energy Chem., 2022, 64, 166.

[9]

Fujita T, Chen H, Wang KT, et al. Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. Int. J. Miner. Metall. Mater., 2021, 28(2): 179.

[10]

Sun LY, Liu BR, Wu T, et al. Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride. Int. J. Miner. Metall. Mater., 2021, 28(6): 991.

[11]

J. Lu, T. Wu, and K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries, Nat. Energy, 2(2017), art. No. 17011.

[12]

J. Cui, H.K. Zheng, and K. He, In situ TEM study on conversion-type electrodes for rechargeable ion batteries, Adv. Mater., 33(2021), No. 6, art. No. e2000699.

[13]

Lin F, Liu YJ, Yu XQ, et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Red., 2017, 117(21): 13123.

[14]

Lang SY, Shi Y, Guo YG, Wang D, Wen R, Wan LJ. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study. Angew. Chem. Int. Ed., 2016, 55(51): 15835.

[15]

Baddour-Hadjean R, Pereira-Ramos JP. Raman micro-spectrometry applied to the study of electrode materials for lithium batteries. Chem. Red., 2010, 110(3): 1278.

[16]

R. Tao, J.G. Zhu, Y.F. Zhang, W.L. Song, H.S. Chen, and D.N. Fang, Quantifying the 2D anisotropic displacement and strain fields in graphite-based electrode via in situ scanning electron microscopy and digital image correlation, Extreme Mech. Lett., 35(2020), art. No. 100635.

[17]

Bak SM, Shadike Z, Lin RQ, Yu XQ, Yang XQ. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater, 2018, 10(7): 563.

[18]

Rikka VR, Sahu SR, Chatterjee A, et al. In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries. J. Phys. Chem. C, 2018, 122(50): 28717.

[19]

Yamagishi Y, Morita H, Nomura Y, Igaki E. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry. ACS Appl. Mater. Interfaces, 2021, 13(1): 580.

[20]

Freytag AI, Pauric AD, Krachkovskiy SA, Goward GR. In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design. J. Am. Chem. Soc., 2019, 141(35): 13758.

[21]

E.Y. Zhao, Z.G. Zhang, X.Y. Li, L.H. He, X.Q. Yu, H. Li, and F.W. Wang, Neutron-based characterization techniques for lithium-ion battery research, Chin. Phys. B, 29(2020), No. 1, art. No. 018201.

[22]

Z. Deng, X. Lin, Z.Y. Huang, J.T. Meng, Y. Zhong, G.T. Ma, Y. Zhou, Y. Shen, H. Ding, and Y.H. Huang, Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000806.

[23]

Song BH, Veith GM, Park J, Yoon M, Whitfield PS, Kirkham MJ, Liu J, Huq A. Metastable Li1+δMn2O4 (0≤δ≤1) spinel phases revealed by in operando neutron diffraction and first-principles calculations. Chem. Mater., 2019, 31(1): 124.

[24]

Han YP, Chen DJ, Ali S, Feng C, Meng FP, Waqas M, He WD. Hierarchical self-supported carbon nanostructure enables superior stability of highly nitrogen-doped anodes. ChemElectroChem, 2020, 7(18): 3883.

[25]

Hongyou K, Hattori T, Nagai Y, Tanaka T, Nii H, Shoda K. Dynamic in situ Fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery. J. Power Sources, 2013, 243, 72.

[26]

F. Rittweger, C. Modrzynski, V. Roscher, D.L. Danilov, P.H.L. Notten, and K.R. Riemschneider, Investigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation, J. Power Sources, 482(2021), art. No. 228943.

[27]

H. Wu, D. Zhuo, D. Kong, and Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator, Nat. Commun., 5(2014), art. No. 5193.

[28]

Hsieh YC, Thienenkamp JH, Huang CJ, et al. Revealing the impact of film-forming electrolyte additives on lithium metal batteries via solid-state NMR/MRI analysis. J. Phys. Chem. C, 2021, 125(1): 252.

[29]

Wandt J, Jakes P, Granwehr J, Eichel RA, Gasteiger HA. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today, 2018, 21(3): 231.

[30]

R. Sakuma, H. Hashimoto, T. Fujii, J. Takada, N. Hayashi, and M. Takano, In situ Mössbauer analysis of bacterial iron-oxide nano-particles for lithium-ion battery, Hyperfine Interact., 240(2019), No. 1, art. No. 80.

[31]

Balke N, Kalnaus S, Dudney NJ, Daniel C, Jesse S, Kalinin SV. Local detection of activation energy for ionic transport in lithium cobalt oxide. Nano Lett., 2012, 12(7): 3399.

[32]

Lipson AL, Ginder RS, Hersam MC. Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy. Adv. Mater., 2011, 23(47): 5613.

[33]

Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem., 2016, 8(7): 684.

[34]

J.J. Wang, Y.C.K. Chen-Wiegart, and J. Wang, In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy, Nat. Commun., 5(2014), art. No. 4570.

[35]

Pérez-Villar S, Lanz P, Schneider H, Novák P. Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy. Electrochim. Acta, 2013, 106, 506.

[36]

B. Tsuchiya, J. Ohnishi, Y. Sasaki, et al., In situ direct lithium distribution analysis around interfaces in an all-solid-state rechargeable lithium battery by combined ion-beam method, Adv. Mater. Interfaces, 6(2019), No. 14, art. No. 1900100.

[37]

Zhu JK, Shen HH, Shi XB, et al. Revealing the chemical and structural evolution of V2O5 nanoribbons in lithium-ion batteries using in situ transmission electron microscopy. Anal. Chem., 2019, 91(17): 11055.

[38]

R. Schmidt, H. Fitzek, M. Nachtnebel, C. Mayrhofer, H. Schroettner, and A. Zankel, The combination of electron microscopy, Raman microscopy and energy dispersive X-ray spectroscopy for the investigation of polymeric materials, Macromol. Symp., 384(2019), No. 1, art. No. 1800237.

[39]

Zhang LQ, Yang TT, Du CC, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol., 2020, 15(2): 94.

[40]

Borkiewicz OJ, Shyam B, Wiaderek KM, Kurtz C, Chupas PJ, Chapman KW. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements. J. Appl. Crystallogr, 2012, 45(6): 1261.

[41]

L. Vitoux, M. Reichardt, S. Sallard, P. Novák, D. Sheptyakov, and C. Villevieille, A cylindrical cell for operando neutron diffraction of Li-ion battery electrode materials, Front. Energy Res., 6(2018), art. No. 76.

[42]

Ghanty C, Markovsky B, Erickson EM, et al. Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2(0.005<x<0.03; y:z = 8:1, w ≈ 1) electrodes: In situ XRD and Raman spectroscopy study. ChemElectroChem, 2015, 2(10): 1479.

[43]

Poli F, Kshetrimayum JS, Monconduit L, Letellier M. New cell design for in situ NMR studies of lithium-ion batteries. Electrochem. Commun., 2011, 13(12): 1293.

[44]

Gu M, Parent LR, Mehdi BL, et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 2013, 13(12): 6106.

[45]

Zhou X, Li T, Cui Y, Fu Y, Liu Y, Zhu L. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(2): 1733.

[46]

Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim. Acta, 2014, 136, 529.

[47]

Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev., 2018, 47(3): 736.

[48]

Sathiya M, Rousse G, Ramesha K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater., 2013, 12(9): 827.

[49]

Lanz P, Villevieille C, Novák P. Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3°(1−x))LiMO2 (M = Ni, Co, Mn). Electrochim. Acta, 2014, 130, 206.

[50]

Cao X, Li HF, Qiao Y, Jia M, He P, Cabana J, Zhou HS. Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater., 2021, 38, 1.

[51]

Zhou LN, Leskes M, Liu T, Grey CP. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes. Angew. Chem. Int. Ed., 2015, 54(49): 14782.

[52]

Seong WM, Cho KH, Park JW, et al. Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew. Chem. Int. Ed., 2020, 59(42): 18662.

[53]

R. Jung, F. Linsenmann, R. Thomas, et al., Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells, J. Electrochem. Soc., 166(2019), No. 2, art. No. A378.

[54]

Li S, Yao ZP, Zheng JM, et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew. Chem. Int. Ed., 2020, 59(49): 22092.

[55]

Jia LJ, Wang J, Ren SY, et al. Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization. Energy Environ. Mater., 2021, 4(2): 222.

[56]

Liu XC, Yang Y, Wu JJ, et al. Dynamic hosts for highperformance Li-S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction. ACS Energy Lett., 2018, 3(6): 1325.

[57]

J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, and C. Villevieille, Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction, Nat. Energy, 2(2017), No. 6, art. No. 17069.

[58]

Wu HL, Huff LA, Gewirth AA. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 2015, 7(3): 1709.

[59]

Z.F. Wang, Y.F. Tang, L.Q. Zhang, M. Li, Z.W. Shan, and J.Y. Huang, In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures, Small, 16(2020), No. 28, art. No. 2001899.

[60]

Wang JY, Tang HJ, Wang H, Yu RB, Wang D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries. Mater. Chem. Front., 2017, 1(3): 414.

[61]

D.Q. Liu, Z. Shadike, R.Q. Lin, et al., Review of recent development of in situ/operando characterization techniques for lithium battery research, Adv. Mater., 31(2019), No. 28, art. No. 1806620.

[62]

Li DW, Wang YK, Lu B, Zhang JQ. Real-time measurements of electro-mechanical coupled deformation and mechanical properties of commercial graphite electrodes. Car, 2020, 169, 258

[63]

R.D. Ding, Y.L. Huang, G.X. Li, Q. Liao, T. Wei, Y. Liu, Y.J. Huang, and H. He, Carbon anode materials for rechargeable alkali metal ion batteries and in situ characterization techniques, Front. Chem., 8(2020), art. No. 607504.

[64]

Schweidler S, Biasi LD, Schiele A, Hartmann P, Brezesinski T, Janek J. Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C, 2018, 122(16): 8829.

[65]

Li YH, Zheng RT, Yu HX, et al. Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(25): 22429.

[66]

Pang WK, Peterson VK, Sharma N, Shiu JJ, Wu SH. Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction. Chem. Mater., 2014, 26(7): 2318.

[67]

K. He, S. Zhang, J. Li, et al., Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy, Nat. Commun., 7(2016), art. No. 11441.

[68]

K. He, Y.F. Yuan, W.T. Yao, et al., Atomistic insights of irreversible Li+ intercalation in MnO2 electrode, Angew. Chem. Int. Ed., 61(2022), No. 2, art. No. e202113420.

[69]

Song B, Loya P, Shen LL, et al. Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications. Nano Energy, 2018, 53, 277.

[70]

Kitada K, Pecher O, Magusin PCMM, Groh MF, Weatherup RS, Grey CP. Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy. J. Am. Chem. Soc., 2019, 141(17): 7014.

[71]

Feng ZY, Peng WJ, Wang ZX, Guo HJ, Li XH, Yan GC, Wang JX. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater., 2021, 28(10): 1549.

[72]

Zhao JL, Wang JY, Bi RY, et al. General synthesis of multiple-cores@multiple-shells hollow composites and their application to lithium-ion batteries. Angew. Chem. Int. Ed., 2021, 60(49): 25719.

[73]

Liu DX, Wang JH, Pan K, et al. In situ quantification and visualization of lithium transport with neutrons. Angew. Chem, 2014, 126(36): 9652.

[74]

Li TY, Zhou XW, Cui Y, et al. In-situ characterization of dynamic morphological and phase changes of selenium-doped germanium using a single particle cell and synchrotron transmission X-ray microscopy. ChemSusChem, 2021, 14(5): 1370.

[75]

J.H. Um and S.H. Yu, Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques, Adv. Energy Mater., 11(2021), No. 27, art. No. 2003004.

[76]

Q. Li, T.C. Yi, X.L. Wang, et al., In-situ visualization of lithium plating in all-solid-state lithium-metal battery, Nano Energy, 63(2019), art. No. 103895.

[77]

Yu SH, Huang X, Brock JD, Abruña HD. Regulating key variables and visualizing lithium dendrite growth: An operando X-ray study. J. Am. Chem. Soc., 2019, 141(21): 8441.

[78]

Li YZ, Li YB, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science, 2017, 358(6362): 506.

[79]

Gunnarsdóttir AB, Amanchukwu CV, Menkin S, Grey CP. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc., 2020, 142(49): 20814.

[80]

Zeng XJ, Liu DQ, Wang SW, Liu S, Cai XK, Zhang LH, Zhao R, Li BH, Kang FY. In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy. ACS Appl. Mater. Interfaces, 2020, 12(33): 37047.

[81]

Wang LY, Wang LF, Wang R, Xu R, Zhan C, Yang W, Liu GC. Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1584.

[82]

Liu TC, Lin LP, Bi XX, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol., 2019, 14(1): 50.

[83]

C. Hou, J.H. Han, P. Liu, et al., Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902675.

[84]

Y.X. Song, Y. Shi, J. Wan, B. Liu, L.J. Wan, and R. Wen, Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000465.

[85]

Chen DC, Mahmoud MA, Wang JH, et al. Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery. Nano Lett, 2019, 19(3): 2037.

[86]

L.M. Suo, Z. Fang, Y.S. Hu, and L.Q. Chen, FT-Raman spectroscopy study of solvent-in-salt electrolytes, Chin. Phys. B, 25(2016), No. 1, art. No. 016101.

[87]

Li CY, Yu Y, Wang C, et al. Surface changes of LiNixM nyCo1−xyO2 in Li-ion batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. C, 2020, 124(7): 4024.

[88]

Zhang YR, Katayama Y, Tatara R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci., 2020, 13(1): 183.

[89]

Wohde F, Bhandary R, Moldrickx JM, Sundermeyer J, Schönhoff M, Roling B. Li+ ion transport in ionic liquid-based electrolytes and the influence of sulfonate-based zwitterion additives. Solid State Ion., 2016, 284, 37.

[90]

Forster JD, Harris SJ, Urban JJ. Mapping Li+ concentration and transport via in situ confocal Raman microscopy. J. Phys. Chem. Lett., 2014, 5(11): 2007.

[91]

Jafta CJ, Sun XG, Veith GM, et al. Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering. Energy Environ. Sci., 2019, 12(6): 1866.

[92]

C.S. Jiang, Y. Yin, H. Guthrey, K. Park, S.H. Lee, and M.M. Al-Jassim, Local electrical degradations of solid-state electrolyte by nm-scale operando imaging of ionic and electronic transports, J. Power Sources, 481(2021), art. No. 229138.

[93]

Liang HJ, Hou BH, Li WH, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci., 2019, 12(12): 3575.

[94]

Schiele A, Hatsukade T, Berkes BB, Hartmann P, Brezesinski T, Janek J. High-throughput in situ pressure analysis of lithium-ion batteries. Anal. Chem., 2017, 89(15): 8122.

[95]

Michalak B, Berkes BB, Sommer H, Bergfeldt T, Brezesinski T, Janek J. Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements. Anal. Chem., 2016, 88(5): 2877.

[96]

Gerelt-Od B, Kim J, Shin E, et al. In situ Raman investigation of resting thermal effects on gas emission in charged commercial 18650 lithium ion batteries. J. Ind. Eng. Chem., 2021, 96, 339.

[97]

Teng X, Zhan C, Bai Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes. ACS Appl. Mater. Interfaces, 2015, 7(41): 22751.

[98]

Vetter J, Holzapfel M, Wuersig A, Scheifele W, Ufheil J, Novák P. In situ study on CO2 evolution at lithium-ion battery cathodes. J. Power Sources, 2006, 159(1): 277.

[99]

Zeng ZQ, Liu XW, Jiang XY, et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat, 2020, 2(5): 984.

[100]

Z.Y. Yu, Y. Shao, L.P. Ma, et al., Revealing the sulfur redox paths in a Li-S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry, Adv. Mater., 34(2022), No. 7, art. No. 2106618.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/