Recent progress in the machine learning-assisted rational design of alloys

Huadong Fu , Hongtao Zhang , Changsheng Wang , Wei Yong , Jianxin Xie

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 635 -644.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 635 -644. DOI: 10.1007/s12613-022-2458-8
Invited Review

Recent progress in the machine learning-assisted rational design of alloys

Author information +
History +
PDF

Abstract

Alloys designed with the traditional trial and error method have encountered several problems, such as long trial cycles and high costs. The rapid development of big data and artificial intelligence provides a new path for the efficient development of metallic materials, that is, machine learning-assisted design. In this paper, the basic strategy for the machine learning-assisted rational design of alloys was introduced. Research progress in the property-oriented reversal design of alloy composition, the screening design of alloy composition based on models established using element physical and chemical features or microstructure factors, and the optimal design of alloy composition and process parameters based on iterative feedback optimization was reviewed. Results showed the great advantages of machine learning, including high efficiency and low cost. Future development trends for the machine learning-assisted rational design of alloys were also discussed. Interpretable modeling, integrated modeling, high-throughput combination, multi-objective optimization, and innovative platform building were suggested as fields of great interest.

Keywords

machine learning / data mining / rational design / alloys

Cite this article

Download citation ▾
Huadong Fu, Hongtao Zhang, Changsheng Wang, Wei Yong, Jianxin Xie. Recent progress in the machine learning-assisted rational design of alloys. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 635-644 DOI:10.1007/s12613-022-2458-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abelson PH. Materials research and applications. Science, 1996, 274(5291): 1283.

[2]

Lu K. The future of metals. Science, 2010, 328, 319.

[3]

Bhandari U, Zhang CY, Guo SM, Yang SZ. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. Int. J. Miner. Metall. Mater., 2020, 27(10): 1398.

[4]

Nong ZS, Wang HY, Zhu J C. First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67 (HfZrTi)0.33 high-entropy alloy under high pressure. Int. J. Miner. Metall. Mater., 2020, 27(10): 1405.

[5]

Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddoes JC. Lightweight materials for aircraft applications. Mater. Charact., 1995, 35(1): 41.

[6]

Pollock TM. Alloy design for aircraft engines. Nat. Mater., 2016, 15(8): 809.

[7]

Li Z, Xiao Z, Jiang YB, Lei Q, Xie JX. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity. Chin. J. Noferrous Met., 2019, 29(9): 2009

[8]

Y.J. Su, D.W. Zhang, Q. Feng, and J.X. Xie, A vision of materials genome engineering in China, Engineering, 2022. DOI: https://doi.org/10.1016/j.eng.2021.12.008

[9]

Xie JX, Su YJ, Xue DZ, Jiang X, Fu HD, Huang HY. Machine learning for materials research and development. Acta Metall. Sinica, 2021, 57(11): 1343

[10]

Deng ZH, Yin HQ, Jiang X, Zhang C, Zhang GF, Xu B, Yang GQ, Zhang T, Wu M, Qu XH. Machine-learning-assisted prediction of the mechanical properties of Cu−Al alloy. Int. J. Miner. Metall. Mater., 2020, 27(3): 362.

[11]

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547.

[12]

T. Lookman, P.V. Balachandran, D.Z. Xue, and R.H. Yuan, Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design, npj Comput. Mater., 5(2019), art. No. 21.

[13]

Wang J, Yang XY, Zeng Z, Zhang XL, Zhao XS, Wang ZG. New methods for prediction of elastic constants based on density functional theory combined with machine learning. Comput. Mater. Sci., 2017, 138, 135.

[14]

L. Huber, R. Hadian, B. Grabowski, and J. Neugebauer, A machine learning approach to model solute grain boundary segregation, npj Comput. Mater., 4(2018), art. No. 64.

[15]

Agrawal A, Choudhary A. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int. J. Fatigue, 2018, 113, 389.

[16]

Huang WJ, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater., 2019, 169, 225.

[17]

Y.F. Chen, Y. Tian, Y.M. Zhou, D.Q. Fang, X.D. Ding, J. Sun, and D.Z. Xue, Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy, J. Alloys Compd., 844(2020), art. No. 156159.

[18]

Famili A, Shen WM, Weber R, Simoudis E. Data preprocessing and intelligent data analysis. Intell. Data Anal., 1997, 1(1–4): 3.

[19]

Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73.

[20]

R.H. Yuan, Z. Liu, P.V. Balachandran, D.Q. Xue, Y.M. Zhou, X.D. Ding, J. Sun, D.Z. Xue, and T. Lookman, Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning, Adv. Mater., 30(2018), No. 7, art. No. 1702884.

[21]

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput., 1997, 1(1): 67.

[22]

Quinlan JR. Induction of decision trees. Mach. Learn., 1986, 1, 81.

[23]

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533.

[24]

Cortes C, Vapnik V. Support-vector networks. Mach. Learn., 1995, 20, 273.

[25]

Kononenko I. Semi-naive Bayesian classifier. European Working Session on Learning, 1991, Berlin, Heidelberg, Springer, 206

[26]

A. Zunger, Inverse design in search of materials with target functionalities, Nat. Rev. Chem., 2(2018), art. No. 0121.

[27]

Kunnikuruvan S, Chakraborty A, Major DT. Monte Carlo- and simulated-annealing-based funneled approach for the prediction of cation ordering in mixed transition-metal oxide materials. J. Phys. Chem. C, 2020, 124(50): 27366.

[28]

Roshan SB, Jooibari MB, Teimouri R, Asgharzadeh-Ahmadi G, Falahati-Naghibi M, Sohrabpoor H. Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. Int. J. Adv. Manuf. Technol., 2013, 69(5–8): 1803.

[29]

Chakraborti N, Sreevathsan R, Jayakanth R, Bhattacharya B. Tailor-made material design: An evolutionary approach using multi-objective genetic algorithms. Comput. Mater. Sci., 2009, 45(1): 1.

[30]

Sreevathsan R, Bhattacharya B, Chakraborti N. Designing ionic materials through multiobjective genetic algorithms. Mater. Manuf. Processes, 2009, 24(2): 162.

[31]

Liu TD, Xu LY, Shao GF, Tu NN, Tao JP, Wen YH. Structural optimization of Pt−Pd−Rh trimetallic nanoparticles using improved genetic algorithm. J. Alloys Compd., 2016, 663, 466.

[32]

C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, and J.X. Xie, A property-oriented design strategy for high performance copper alloys via machine learning, npj Comput. Mater., 5(2019), art. No. 87.

[33]

Su YJ, Fu HD, Bai Y, Jiang X, Xie JX. Progress in materials genome engineering in China. Acta Metall. Sin., 2020, 56(10): 1313

[34]

Jiang L, Wang CS, Fu HD, Shen J, Zhang ZH, Xie JX. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J. Mater. Sci. Technol., 2022, 98, 33.

[35]

H.X. Zong, G. Pilania, X.D. Ding, G.J. Ackland, and T. Lookman, Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning, npj Comput. Mater., 4(2018), art. No. 48.

[36]

Tsutsui K, Terasaki H, Maemura T, Hayashi K, Moriguchi K, Morito S. Microstructural diagram for steel based on crystallography with machine learning. Comput. Mater. Sci., 2019, 159, 403.

[37]

Feng S, Zhou HY, Dong HB. Using deep neural network with small dataset to predict material defects. Mater. Des., 2019, 162, 300.

[38]

L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, npj Comput. Mater., 2(2016), art. No. 16028.

[39]

Ward L, O’Keeffe SC, Stevick J, Jelbert GR, Aykol M, Wolverton C. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater., 2018, 159, 102.

[40]

Islam N, Huang WJ, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci., 2018, 150, 230.

[41]

Villars P, Calvert LD. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 1991, Ohio, ASM Int.

[42]

Yuan RH, Xue DQ, Xue DZ, Li JS, Ding XD, Sun J, Lookman T. Knowledge-based descriptor for the compositional dependence of the phase transition in BaTiO3-based ferroelectrics. ACS Appl. Mater. Interfaces, 2020, 12(40): 44970.

[43]

Li SZ, Zhang HR, Dai DB, Ding GT, Wei X, Guo YK. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning. J. Alloys Compd., 2019, 782, 110.

[44]

Z.C. Lu, X. Chen, X.J. Liu, D.Y. Lin, Y. Wu, Y.B. Zhang, H. Wang, S.H. Jiang, H.X. Li, X.Z. Wang, and Z.P. Lu, Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, npj Comput. Mater., 6(2020), art. No. 187.

[45]

Kaufmann K, Vecchio KS. Searching for high entropy alloys: A machine learning approach. Acta Mater., 2020, 198, 178.

[46]

V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine learning modeling of superconducting critical temperature, npj Comput. Mater., 4(2018), art. No. 29.

[47]

Wu H, Lorenson A, Anderson B, Witteman L, Wu HT, Meredig B, Morgan D. Robust FCC solute diffusion predictions from ab-initio machine learning methods. Comput. Mater. Sci., 2017, 134, 160.

[48]

Kirklin S, Saal JE, Hegde VI, Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater., 2016, 102, 125.

[49]

Zhang Y, Wen C, Wang CX, Antonov S, Xue DZ, Bai Y, Su YJ. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater., 2020, 185, 528.

[50]

Z.Q. Zhou, Y.J. Zhou, Q.F. He, Z.Y. Ding, F.C. Li, and Y. Yang, Machine learning guided appraisal and exploration of phase design for high entropy alloys, npj Comput. Mater., 5(2019), art. No. 128.

[51]

J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, and G. Balasubramanian, Materials informatics for the screening of multi-principal elements and high-entropy alloys, Nat. Commun., 10(2019), art. No. 2618.

[52]

X.M. Wang, Y.L. Xu, J. Yang, J.Y. Ni, W. Zhang, and W.H. Zhu, ThermoEPred-EL: Robust bandgap predictions of chalcogenides with diamond-like structure via feature cross-based stacked ensemble learning, Comput. Mater. Sci., 169(2019), art. No. 109117.

[53]

D.B. Dai, T. Xu, X. Wei, G.T. Ding, Y. Xu, J.C. Zhang, and H.R. Zhang, Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Comput. Mater. Sci., 175(2020), art. No. 109618.

[54]

Benesty J, Chen JD, Huang YT, Cohen I. Noise Reduction in Speech Processing, 2009, Berlin, Heidelberg, Springer

[55]

Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 1996, 58(1): 267

[56]

Granitto PM, Furlanello C, Biasioli F, Gasperi F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst., 2006, 83(2): 83.

[57]

Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn., 2002, 46, 389.

[58]

Y. Liu, J.M. Wu, M. Avdeev, and S.Q. Shi, Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties, Adv. Theor. Simul., 3(2020), No. 2, art. No. 1900215.

[59]

Zhang HT, Fu HD, He XQ, Wang CS, Jiang L, Chen LQ, Xie JX. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater., 2020, 200, 803.

[60]

Yeh JW. Recent progress in high-entropy alloys. Eur. J. Control, 2006, 31(6): 633

[61]

C. Wen, C.X. Wang, Y. Zhang, S. Antonov, D.Z. Xue, T. Lookman, and Y.J. Su, Modeling solid solution strengthening in high entropy alloys using machine learning, Acta Mater., 212(2021), art. No. 116917.

[62]

H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118.

[63]

D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), art. No. 11241.

[64]

Xue DZ, Xue DQ, Yuan RH, Zhou YM, Balachandran PV, Ding XD, Sun J, Lookman T. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater., 2017, 125, 532.

[65]

Wen C, Zhang Y, Wang CX, Xue DZ, Bai Y, Antonov S, Dai LH, Lookman T, Su YJ. Machine learning assisted design of high entropy alloys with desired property. Acta Mater., 2019, 170, 109.

[66]

Liu YW, Wang LY, Zhang H, Zhu GM, Wang J, Zhang YH, Zeng XQ. Accelerated development of high-strength magnesium alloys by machine learning. Metall. Mater. Trans. A, 2021, 52(3): 943.

[67]

H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu−Ni−Co−Si−X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 2022. DOI: https://doi.org/10.1007/s12613-022-2479-3

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/