High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

Wenjun Liu , Bin Jiang , Hongchen Xiang , Qing Ye , Shengqi Xia , Siqiang Chen , Jiangfeng Song , Yanlong Ma , Mingbo Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1373 -1379.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1373 -1379. DOI: 10.1007/s12613-022-2456-x
Article

High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

Author information +
History +
PDF

Abstract

The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450–525°C and strain rates of 3.0 s−1 and 0.15 s−1 were investigated by tensile tests. Zero ductility of alloy appeared at 500°C with a strain rate of 0.15 s−1, while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525°C with a strain rate of 3.0 s−1. The results indicated that the lower strain rate accelerated the arrival of zero ductility. As the temperature increased, the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces. The existence of the low-melting composite of β-Mg17Al12 and Al8Mn5 particles segregated near the Mg17Al12 phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures. Furthermore, microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.

Keywords

AZ80 magnesium alloy / strain rate / microstructural evolution / Al8Mn5 phase / fracture morphology

Cite this article

Download citation ▾
Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, Mingbo Yang. High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(7): 1373-1379 DOI:10.1007/s12613-022-2456-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

You SH, Huang YD, Kainer KU, Hort N. Recent research and developments on wrought magnesium alloys. J. Magnesium Alloys, 2017, 5(3): 239.

[2]

Xu TC, Yang Y, Peng XD, Song JF, Pan FS. Overview of advancement and development trend on magnesium alloy. J. Magnesium Alloys, 2019, 7(3): 536.

[3]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnesium Alloys, 2020, 8(1): 1.

[4]

Rong J, Xiao WL, Zhao XQ, Ma CL, Liao HM, He DL, Chen M, Huang M, Huang C. High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components. Int. J. Miner. Metall. Mater., 2022, 29(1): 88.

[5]

Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, and H. Choo, Dynamic recrystallization of a wrought magnesium alloy: Grain size and texture maps and their application for mechanical behavior predictions, Mater. Des., 202(2021), art. No. 109562.

[6]

Denk J, Whitmore L, Huber O, Diwald O, Saage H. Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys. Int. J. Fatigue, 2018, 117, 283.

[7]

Zeng ZR, Bian MZ, Xu SW, Tang WN, Davies C, Birbilis N, Nie JF. Optimisation of alloy composition for highly-formable magnesium sheet. Int. J. Miner. Metall. Mater., 2022, 29(7): 1388.

[8]

Yu JC, Song B, Xia DB, Zeng X, Huang YD, Hort N, Mao PL, Liu Z. Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. J. Magnesium Alloys, 2020, 8(3): 849.

[9]

Wang J, Zhu GM, Wang LY, Vasilev E, Park JS, Sha G, Zeng XQ, Knezevic M. Origins of high ductility exhibited by an extruded magnesium alloy Mg−1.8Zn−0.2Ca: Experiments and crystal plasticity modeling. J. Mater. Sci. Technol., 2021, 84, 27.

[10]

Jafari H, Tehrani AHM, Heydari M. Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(3): 490.

[11]

Mehtedi ME, DOrazio A, Forcellese A, Pieralisi M, Simoncini M. Effect of the rolling temperature on hot formability of ZAM100 magnesium alloy. Procedia CIRP, 2018, 67, 493.

[12]

Y. Wang, F. Li, N. Bian, H.Q. Du, and P. da Huo, Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.035

[13]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[14]

Mei RB, Bao L, Huang F, Zhang X, Qi XW, Liu XH. Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations. Mech. Mater., 2018, 125, 110.

[15]

Hadadzadeh A, Wells MA. Analysis of the hot deformation of ZK60 magnesium alloy. J. Magnesium Alloys, 2017, 5(4): 369.

[16]

J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps, Int. J. Mech. Sci., 191(2021), art. No. 106069.

[17]

Zhang XP, Wang HX, Bian LP, Zhang SX, Zhuang YP, Cheng WL, Liang W. Microstructure evolution and mechanical properties of Mg−9Al−1Si−1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures. Int. J. Miner. Metall. Mater., 2021, 28(12): 1966.

[18]

Wang HM, Wu PD, Kurukuri S, Worswick MJ, Peng YH, Tang D, Li DY. Strain rate sensitivities of deformation mechanisms in magnesium alloys. Int. J. Plast., 2018, 107, 207.

[19]

H. Wang, X. Sun, S. Kurukuri, M.J. Worswick, D.Y. Li, Y.H. Peng, and P.D. Wu, The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.06.010

[20]

Li L, Muránsky O, Flores-Johnson EA, Kabra S, Shen LM, Proust G. Effects of strain rate on the microstructure evolution and mechanical response of magnesium alloy AZ31. Mater. Sci. Eng. A, 2017, 684, 37.

[21]

Karimi E, Zarei-Hanzaki A, Pishbin MH, Abedi HR, Changizian P. Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy. Mater. Des., 2013, 49, 173.

[22]

Cai ZW, Chen FX, Guo JQ. Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain. J. Alloys Compd., 2015, 648, 215.

[23]

Khan AS, Pandey A, Gnäupel-Herold T, Mishra RK. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast., 2011, 27(5): 688.

[24]

Kang GZ, Li H. Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models. Int. J. Miner. Metall. Mater., 2021, 28(4): 567.

[25]

Hristov VS, Yoshida K. Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires. Procedia Manuf., 2018, 15, 341.

[26]

Jiang LY, Huang WJ, Zhang DF, Guo F, Xue HS, Xu JY, Pan FS. Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression. J. Alloys Compd., 2017, 727, 205.

[27]

Asqardoust S, Zarei-Hanzaki A, Fatemi SM, Moradjoy-Hamedani M. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy. J. Alloys Compd., 2016, 669, 108.

[28]

Zhang JL, Xie H, Lu ZL, Ma Y, Tao SP, Zhao K. Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging. Results Phys., 2018, 10, 967.

[29]

G.L. Shi, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and H.J. Zhang, Dislocation configuration evolution during extension twinning and its influence on precipitation behavior in AZ80 wrought magnesium alloy, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.032

[30]

Luo L, Xiao ZY, Huo QH, Yang Y, Huang WY, Guo JC, Ye YX, Yang XY. Enhanced mechanical properties of a hot-extruded AZ80 Mg alloy rod by pre-treatments and post-hot compression. J. Alloys Compd., 2018, 740, 180.

[31]

Song X, Wang L, Liu Y. A review of the strengthening—Toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment. Int. J. Miner. Metall. Mater., 2022, 29(2): 185.

[32]

Du ZM, Wang DY, Zhang HJ. Influence of hot extrusion process on microstructure and mechanical properties of Mg-Zn-Y-Zr magnesium alloy. Rare Met. Mater. Eng., 2018, 47(6): 1655.

[33]

Z.J. Zhang, L. Yuan, D.B. Shan, and B. Guo, The quantitative effects of temperature and cumulative strain on the mechanical properties of hot-extruded AZ80 Mg alloy during multi-directional forging, Mater. Sci. Eng. A, 827(2021), art. No. 142036.

[34]

X. Zhao, P.C. Gao, G. Chen, J.F. Wei, Z. Zhu, F.F. Yan, Z.M. Zhang, and Q. Wang, Effects of aging treatments on low-cycle fatigue behavior of extruded AZ80 for automobile wheel disks, Mater. Sci. Eng. A, 799(2021), art. No. 140366.

[35]

Su ZX, Wan L, Sun CY, Cai Y, Yang DJ. Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability. Mater. Charact., 2016, 122, 90.

[36]

Cai Y, Wan L, Guo ZH, Sun CY, Yang DJ, Zhang QD, Li YL. Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities. Mater. Sci. Eng. A, 2017, 687, 113.

[37]

P. Prakash, D. Toscano, S.K. Shaha, M.A. Wells, H. Jahed, and B.W. Williams, Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139923.

[38]

Tang Q, Zhou MY, Fan LL, Zhang Y, Quan GF, Liu B. Constitutive behavior of AZ80 M magnesium alloy compressed at elevated temperature and containing a small fraction of liquid. Vacuum, 2018, 155, 476.

[39]

Wang C, Luo TJ, Yang YS. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates. J. Magnesium Alloys, 2016, 4(3): 181.

[40]

Chen G, Zhang S, Zhang HM, Han F, Wang G, Chen Q, Zhao ZD. Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding. J. Mater. Process. Technol., 2018, 259, 88.

[41]

Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741.

[42]

Song JF, Pan FS, Jiang B, Atrens A, Zhang MX, Lu Y. A review on hot tearing of magnesium alloys. J. Magnesium Alloys, 2016, 4(3): 151.

[43]

D’Elia F, Ravindran C, Sediako D, Kainer KU, Hort N. Hot tearing mechanisms of B206 aluminum-copper alloy. Mater. Des., 2014, 64, 44.

[44]

Pan FS, Feng ZX, Zhang XY, Tang AT. The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy. Procedia Eng., 2012, 27, 833.

[45]

Chen T, Yuan Y, Liu TT, Li DJ, Tang AT, Chen XH, Schmid-Fetzer R, Pan FS. Effect of Mn addition on melt purification and Fe tolerance in Mg alloys. JOM, 2021, 73(3): 892.

[46]

Zeng G, Xian JW, Gourlay CM. Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn, Fe) in AZ91 magnesium alloys. Acta Mater., 2018, 153, 364.

[47]

L. Peng, G. Zeng, J. Xian, and C.M. Gourlay, Al-Mn-Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron, Intermetallics, 142(2022), art. No. 107465.

[48]

Clyne TW, Davies GJ. The influence of composition on solidification cracking susceptibility in binary alloys. Br. Foundryman, 1981, 74(4): 65

[49]

Ghoncheh MH, Shabestari SG, Asgari A, Karimzadeh M. Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy. Trans. Nonferrous Met. Soc. China, 2018, 28(5): 848.

[50]

Zhang GJ, Wang Y, Liu Z, Liu SM. Influence of Al addition on solidification path and hot tearing susceptibility of Mg−2Zn−(3 + 0.5x)Y−xAl alloys. J. Magnesium Alloys, 2019, 7(2): 272.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/