Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries

Lingyun Xiong , Hao Fu , Weiwei Han , Manxiang Wang , Jingwei Li , Woochul Yang , Guicheng Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1053 -1060.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1053 -1060. DOI: 10.1007/s12613-022-2454-z
Article

Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries

Author information +
History +
PDF

Abstract

Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity, lower cost, and safety, its service life and efficiency are damaged by severe hydrogen evolution reaction, self-corrosion, and dendrite growth. Herein, a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation—orientation sulfuration by the liquid- and vapor-phase hydrothermal processes. Benefiting from the chemical inertness of the ZnS interphase, the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction. Meanwhile, the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping, leading to long service life. Consequently, the Zn@ZnS presented 300 cycles in the symmetric cells with a 42 mV overpotential, 200 cycles in half cells with a 78 mV overpotential, and superb rate performance in Zn∥NH4V4O10 full cells.

Keywords

Zn metal anode / dendrite-free / ZnS passivation layer / controllable thickness / chemical inertness / unbalanced charge distribution

Cite this article

Download citation ▾
Lingyun Xiong, Hao Fu, Weiwei Han, Manxiang Wang, Jingwei Li, Woochul Yang, Guicheng Liu. Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 1053-1060 DOI:10.1007/s12613-022-2454-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qin XH, Du YH, Zhang PC, Wang XY, Lu QQ, Yang AK, Sun JC. Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1684.

[2]

J.Y. Kim, G.C. Liu, G.Y. Shim, H. Kim, and J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes, Adv. Funct. Mater., 30(2020), No. 36, art. No. 2004210.

[3]

M.J. Wu, G.X. Zhang, H.M. Yang, X.H. Liu, M. Dubois, M.A. Gauthier, and S.H. Sun, Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives, InfoMat, (2021). DOI: https://doi.org/10.1002/inf2.12265

[4]

Y.L. Heng, Z.Y. Gu, J.Z. Guo, and X.L. Wu, Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries, Acta Phys. Chim. Sin., 37(2020), No. 3, p. art. No. 2005013.

[5]

R.E.A. Ardhi, G.C. Liu, and J.K. Lee, Metal—semiconductor ohmic and Schottky contact interfaces for stable Li-metal electrodes, ACS Energy Lett., (2021), p. 1432.

[6]

Tao HC, Xiong LY, Zhu SC, Yang XL, Zhang LL. Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries. Int. J. Hydrogen Energy, 2016, 41(46): 21268.

[7]

Tao HC, Zhu SC, Xiong LY, Zhang LL, Yang XL. Reduced graphene oxide wrapped Si/C assembled on 3D N-doped carbon foam as binder-free anode for enhanced lithium storage. ChemistrySelect, 2017, 2(9): 2832.

[8]

Tao HC, Xiong LY, Du SL, Zhang YQ, Yang XL, Zhang LL. Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon, 2017, 122, 54.

[9]

Chen FH, Wu YW, Zhang HH, Long ZT, Lin XX, Chen MZ, Chen Q, Luo YF, Chou SL, Zeng RH. The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1675.

[10]

Fu H, Xu ZW, Li RZ, Guan WW, Yao K, Huang JF, Yang J, Shen XT. Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustainable Chem. Eng., 2018, 6(11): 14751.

[11]

Han Y, Liu SY, Cui L, Xu L, Xie J, Xia XK, Hao WK, Wang B, Li H, Gao J. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2018, 25(1): 88.

[12]

Yang M, Ning QL, Fan CY, Wu XL. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin. Chem. Lett., 2021, 32(2): 895.

[13]

Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met., 2021, 40(6): 1383.

[14]

D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan, D.S. Liu, J.W. Wang, Y. Zhang, H.Y. Lü, F.Y. Bai, J.Z. Guo, and X.L. Wu, In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells, Adv. Mater., 30(2018), No. 21, art. No. 1706317.

[15]

Han WW, Liu GC, Seo W, Lee H, Chu HQ, Yang W. Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage. Carbon, 2021, 184, 534.

[16]

Chen L, Bao JL, Dong X, Truhlar DG, Wang Y, Wang C, Xia Y. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett., 2017, 2(5): 1115.

[17]

Zhang XT, Li JX, Liu DY, Liu MK, Zhou TS, Qi KW, Shi L, Zhu YC, Qian YT. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci., 2021, 14(5): 3120.

[18]

J. Cui, X.Y. Liu, Y.H. Xie, K. Wu, Y.Q. Wang, Y.Y. Liu, J.J. Zhang, J. Yi, and Y.Y. Xia, Improved electrochemical reversibility of Zn plating/stripping: A promising approach to suppress water-induced issues through the formation of H-bonding, Mater. Today Energy, 18(2020), art. No. 100563.

[19]

R.Z. Qin, Y.T. Wang, M.Z. Zhang, Y. Wang, S.X. Ding, A.Y. Song, H.C. Yi, L.Y. Yang, Y.L. Song, Y.H. Cui, J. Liu, Z.Q. Wang, S.N. Li, Q.H. Zhao, and F. Pan, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80(2021), art. No. 105478.

[20]

Cong JL, Shen X, Wen ZP, Wang X, Peng LQ, Zeng J, Zhao JB. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater., 2021, 35, 586.

[21]

Zhang Q, Luan JY, Fu L, Wu SG, Tang YG, Ji XB, Wang HY. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed Engl., 2019, 58(44): 15841.

[22]

Huang JQ, Chi XW, Han Q, Liu YZ, Du YX, Yang JH, Liu Y. Thickening and homogenizing aqueous electrolyte towards highly efficient and stable Zn metal batteries. J. Electrochem. Soc., 2019, 166(6): A1211.

[23]

Cao LS, Li D, Hu EY, Xu JJ, Deng T, Ma L, Wang Y, Yang XQ, Wang CS. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc., 2020, 142(51): 21404.

[24]

J.H. Zhou, M. Xie, F. Wu, Y. Mei, Y.T. Hao, L. Li, and R.J. Chen, Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries, Adv. Mater., 34(2022), No. 1, art. No. 2106897.

[25]

Cao LS, Li D, Pollard T, Deng T, Zhang B, Yang CY, Chen L, Vatamanu J, Hu EY, Hourwitz MJ, Ma L, Ding M, Li Q, Hou S, Gaskell K, Fourkas JT, Yang XQ, Xu K, Borodin O, Wang CS. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol., 2021, 16(8): 902.

[26]

L.T. Ma, S.M. Chen, N. Li, Z.X. Liu, Z.J. Tang, J.A. Zapien, S.M. Chen, J. Fan, and C.Y. Zhi, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32(2020), No. 14, art. No. e1908121.

[27]

Chu YZ, Zhang S, Wu S, Hu ZL, Cui GL, Luo JY. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci., 2021, 14(6): 3609.

[28]

H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan, B. Fei, and F. Pan, Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523.

[29]

M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.

[30]

Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule, 2020, 4(4): 771.

[31]

Zhao ZM, Zhao JW, Hu ZL, Li JD, Li JJ, Zhang YJ, Wang C, Cui GL. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci., 2019, 12(6): 1938.

[32]

L.T. Ma, Q. Li, Y.R. Ying, F.X. Ma, S.M. Chen, Y.Y. Li, H.T. Huang, and C.Y. Zhi, Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33(2021), No. 12, art. No. 2007406.

[33]

Xie XS, Liang SQ, Gao JW, Guo S, Guo JB, Wang C, Xu GY, Wu XW, Chen G, Zhou J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci., 2020, 13(2): 503.

[34]

J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim, and J.W. Choi, Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries, Adv. Energy Mater., 11(2021), No. 39, art. No. 2100676.

[35]

Shokrollahi H. Magnetic properties and densification of Manganese—zinc soft ferrites (Mn1−xZnxFe2O4) doped with low melting point oxides. J. Magn. Magn. Mater., 2008, 320(3–4): 463.

[36]

Xiao L, Mei DD, Cao ML, Qu DY, Deng BH. Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. J. Alloys Compd., 2015, 627, 455.

[37]

S.F. Ye, L.F. Wang, F.F. Liu, P.C. Shi, H.Y. Wang, X.J. Wu, and Y. Yu, g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002647.

[38]

Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen, and P.M. Ajayan, Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries, Adv. Energy Mater., 10(2020), No. 30, art. No. 2001599.

[39]

Eom M, Son S, Park C, Noh S, Nichols WT, Shin D. High performance all-solid-state lithium—sulfur battery using a Li2S—VGCF nanocomposite. Electrochim. Acta, 2017, 230, 279.

[40]

J.N. Hao, B. Li, X.L. Li, X.H. Zeng, S.L. Zhang, F.H. Yang, S.L. Liu, D. Li, C. Wu, and Z.P. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries, Adv. Mater., 32(2020), No. 34, art. No. 2003021.

[41]

X.Y. Tong, X.W. Ou, N.Z. Wu, H.Y. Wang, J. Li, and Y.B. Tang, High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery, Adv. Energy Mater., 11(2021), No. 25, art. No. 2100151.

[42]

J.Y. Kim, G.C. Liu, R.E.A. Ardhi, J. Park, H. Kim, and J.K. Lee, Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux, Nano-Micro Lett., 14(2022), No. 1, art. No. 46.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/