Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity
Yue Liu , Shaobo Huang , Shanlong Peng , Heng Zhang , Lifan Wang , Xindong Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1090 -1098.
Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity
Proton-exchange membrane water electrolysis (PEM WE) is a particularly promising technology for renewable hydrogen production. However, the excessive passivation of the gas diffusion layer (GDL) will seriously affect the high surface-contact resistance and result in energy losses. Thus, a mechanism for improving the conductivity and interface stability of the GDL is an urgent issue. In this work, we have prepared a hydrophilic and corrosion resistant conductive composite protective coating. The polydopamine (PDA) film on the Ti surface, which was obtained via the solution oxidation method, ensured that neither micropores nor pinholes existed in the final hybrid coatings. In-situ reduced gold nanoparticles (AuNPs) improved the conductivity to achieve the desired interfacial contact resistance and further enhanced the corrosion resistance. The surface composition of the treated samples was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the optimized reaction conditions included a pH value of 3 of HAuCl4 solution with PDA deposition (48 h) on papers and revealed the lowest contact resistance (0.5 mΩ·cm2) and corrosion resistance (0.001 μA·cm−2) in a 0.5 M H2SO4 + 2 ppm F− solution (1.7 V vs. RHE) among all the modified specimens, where RHE represents reversible hydrogen electrode. These findings indicated that the Au—PDA coating is very appropriate for the modification of Ti GDLs in PEM WE systems.
water electrolysis / proton-exchange membrane / hydrogen energy / titanium paper diffusion layer / Au nanoparticles inlaid titanium / gold—polydopamine nanocomposite
| [1] |
C. Liu, M. Shviro, A.S. Gago, et al., Exploring the interface of skin-layered titanium fibers for electrochemical water splitting, Adv. Energy Mater., 11(2021), No. 8, art. No. 2002926. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Z.X. He, Y.R. Lv, T.A. Zhang, et al., Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst, Chem. Eng. J., 427(2022), art. No. 131680. |
| [14] |
S.H. Wang, W.B. Lui, J. Peng, and J.S. Zhang, Performance of the iridium oxide (IrO2)-modified titanium bipolar plates for the light weight proton exchange membrane fuel cells, J. Fuel Cell Sci. Technol., 10(2013), No. 4, art. No. 041002. |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
M. Stern and H. Wissenberg, The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium, J. Electrochem. Soc., 106(1959), No. 9, art. No. 759. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
J.L. Tan, Z. Zhang, and D.T. Ge, Electrodeposition of adherent polypyrrole film on titanium surface with enhanced anti-corrosion performance, MATEC Web Conf., 130(2017), art. No. 08007. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
C.H. Liu, Y.Y. Qiu, Y.J. Xia, et al., Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution, Nanotechnology, 28(2017), No. 44, art. No. 445403. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
/
| 〈 |
|
〉 |